Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Enzyme Inhib Med Chem ; 34(1): 1093-1099, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31117836

RESUMO

Chalcones are valuable structures for drug discovery due to their broad bioactivity spectrum. In this study, we evaluated 20 synthetic chalcones against estrogen-receptor-positive breast cancer cells (MCF-7 line) and triple-negative breast cancer (TNBC) cells (MDA-MB-231 line). Antiproliferative screening by MTT assay resulted in two most active compounds: 2-fluoro-4'-aminochalcone (11) and 3-pyridyl-4'-aminochalcone (17). Their IC50 values ranged from 13.2 to 34.7 µM against both cell lines. Selected chalcones are weak basic compounds and maintained their antiproliferative activity under acidosis conditions (pH 6.7), indicating their resistance to ion-trapping effect. The mode of breast cancer cells death was investigated and chalcones 11 and 17 were able to induce apoptosis rather than necrosis in both lines. Antiproliferative target investigations with MCF-7 cells suggested 11 and 17 upregulated p53 protein expression and did not affect Sp1 protein expression. Future studies on chalcones 11 and 17 can define their in vivo therapeutic potential.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Chalconas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Chalconas/síntese química , Chalconas/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
2.
Cancer ; 124(24): 4633-4649, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30383900

RESUMO

Although cancer often is referred to as "a disease of the genes," it is indisputable that the (epi)genetic properties of individual cancer cells are highly variable, even within the same tumor. Hence, preexisting resistant clones will emerge and proliferate after therapeutic selection that targets sensitive clones. Herein, the authors propose that quantitative image analytics, known as "radiomics," can be used to quantify and characterize this heterogeneity. Virtually every patient with cancer is imaged radiologically. Radiomics is predicated on the beliefs that these images reflect underlying pathophysiologies, and that they can be converted into mineable data for improved diagnosis, prognosis, prediction, and therapy monitoring. In the last decade, the radiomics of cancer has grown from a few laboratories to a worldwide enterprise. During this growth, radiomics has established a convention, wherein a large set of annotated image features (1-2000 features) are extracted from segmented regions of interest and used to build classifier models to separate individual patients into their appropriate class (eg, indolent vs aggressive disease). An extension of this conventional radiomics is the application of "deep learning," wherein convolutional neural networks can be used to detect the most informative regions and features without human intervention. A further extension of radiomics involves automatically segmenting informative subregions ("habitats") within tumors, which can be linked to underlying tumor pathophysiology. The goal of the radiomics enterprise is to provide informed decision support for the practice of precision oncology.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Neoplasias/diagnóstico por imagem , Aprendizado Profundo , Epigênese Genética , Humanos , Imageamento por Ressonância Magnética , Neoplasias/genética , Neoplasias/patologia , Tomografia por Emissão de Pósitrons , Medicina de Precisão
3.
Theranostics ; 11(11): 5313-5329, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859749

RESUMO

Rationale: Hypoxic regions (habitats) within tumors are heterogeneously distributed and can be widely variant. Hypoxic habitats are generally pan-therapy resistant. For this reason, hypoxia-activated prodrugs (HAPs) have been developed to target these resistant volumes. The HAP evofosfamide (TH-302) has shown promise in preclinical and early clinical trials of sarcoma. However, in a phase III clinical trial of non-resectable soft tissue sarcomas, TH-302 did not improve survival in combination with doxorubicin (Dox), possibly due to a lack of patient stratification based on hypoxic status. Therefore, we used magnetic resonance imaging (MRI) to identify hypoxic habitats and non-invasively follow therapies response in sarcoma mouse models. Methods: We developed deep-learning (DL) models to identify hypoxia, using multiparametric MRI and co-registered histology, and monitored response to TH-302 in a patient-derived xenograft (PDX) of rhabdomyosarcoma and a syngeneic model of fibrosarcoma (radiation-induced fibrosarcoma, RIF-1). Results: A DL convolutional neural network showed strong correlations (>0.76) between the true hypoxia fraction in histology and the predicted hypoxia fraction in multiparametric MRI. TH-302 monotherapy or in combination with Dox delayed tumor growth and increased survival in the hypoxic PDX model (p<0.05), but not in the RIF-1 model, which had a lower volume of hypoxic habitats. Control studies showed that RIF-1 resistance was due to hypoxia and not other causes. Notably, PDX tumors developed resistance to TH-302 under prolonged treatment that was not due to a reduction in hypoxic volumes. Conclusion: Artificial intelligence analysis of pre-therapy MR images can predict hypoxia and subsequent response to HAPs. This approach can be used to monitor therapy response and adapt schedules to forestall the emergence of resistance.


Assuntos
Hipóxia/tratamento farmacológico , Nitroimidazóis/farmacologia , Mostardas de Fosforamida/farmacologia , Pró-Fármacos/farmacologia , Sarcoma/tratamento farmacológico , Animais , Inteligência Artificial , Linhagem Celular Tumoral , Aprendizado Profundo , Modelos Animais de Doenças , Doxorrubicina/farmacologia , Ecossistema , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos , Camundongos Endogâmicos C3H , Camundongos SCID , Neoplasias de Tecidos Moles/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
4.
Anticancer Agents Med Chem ; 19(5): 655-666, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30569877

RESUMO

BACKGROUND: The angiogenesis process is regulated by many factors, such as Hypoxia-Inducible Factor-1 (HIF-1) and Vascular Endothelial Growth Factor (VEGF). Metformin has demonstrated its ability to inhibit cell growth and the LY294002 is the major inhibitor of PI3K/AKT/mTOR pathway that has antiangiogenic properties. METHODS: Canine mammary tumor cell lines CMT-U229 and CF41 were treated with metformin and LY294002. Cell viability, protein and gene expression of VEGF and HIF-1 were determined in vitro. For the in vivo study, CF41 cells were inoculated in female athymic nude mice treated with either metformin or LY294002. The microvessel density by immunohistochemistry for CD31 as well as the gene and protein expression of HIF-1 and VEGF were evaluated. RESULTS: The treatment with metformin and LY294002 was able to reduce the cellular viability after 24 hours. The protein and gene expression of HIF-1 and VEGF decreased after treatment with metformin and LY294002. In the in vivo study, there was a decrease in tumor size, protein and gene expression of HIF-1 and VEGFA, in addition to the decreasing of CD31 expression after all treatments. CONCLUSION: Our results demonstrate the effectiveness of metformin and LY294002 in controlling the angiogenesis process in mammary tumors by VEGF and HIF-1, the most important angiogenic markers.


Assuntos
Cromonas/uso terapêutico , Doenças do Cão/tratamento farmacológico , Neoplasias Mamárias Animais/tratamento farmacológico , Metformina/uso terapêutico , Morfolinas/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Cobalto/administração & dosagem , Cães , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Mamárias Animais/irrigação sanguínea , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Cancer Res ; 79(15): 3952-3964, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31186232

RESUMO

It is well-recognized that solid tumors are genomically, anatomically, and physiologically heterogeneous. In general, more heterogeneous tumors have poorer outcomes, likely due to the increased probability of harboring therapy-resistant cells and regions. It is hypothesized that the genomic and physiologic heterogeneity are related, because physiologically distinct regions will exert variable selection pressures leading to the outgrowth of clones with variable genomic/proteomic profiles. To investigate this, methods must be in place to interrogate and define, at the microscopic scale, the cytotypes that exist within physiologically distinct subregions ("habitats") that are present at mesoscopic scales. MRI provides a noninvasive approach to interrogate physiologically distinct local environments, due to the biophysical principles that govern MRI signal generation. Here, we interrogate different physiologic parameters, such as perfusion, cell density, and edema, using multiparametric MRI (mpMRI). Signals from six different acquisition schema were combined voxel-by-voxel into four clusters identified using a Gaussian mixture model. These were compared with histologic and IHC characterizations of sections that were coregistered using MRI-guided 3D printed tumor molds. Specifically, we identified a specific set of MRI parameters to classify viable-normoxic, viable-hypoxic, nonviable-hypoxic, and nonviable-normoxic tissue types within orthotopic 4T1 and MDA-MB-231 breast tumors. This is the first coregistered study to show that mpMRI can be used to define physiologically distinct tumor habitats within breast tumor models. SIGNIFICANCE: This study demonstrates that noninvasive imaging metrics can be used to distinguish subregions within heterogeneous tumors with histopathologic correlation.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Proteômica/métodos , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos
6.
Anticancer Agents Med Chem ; 18(12): 1688-1694, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29384062

RESUMO

BACKGROUND: NF-kB (nuclear factor kappa B) is a transcription factor composed of two subunits, p50 and p65, which plays a key role in the inflammatory process. Melatonin has oncostatic, antiangiogenic and antimetastatic properties, and some recent studies have indicated an inhibitory effect of melatonin on NF-kB in some types of cancer. This work aims to investigate the effects of melatonin treatment on the expression of NFkB in breast and liver cancer models. METHOD: The breast cancer xenographic model was performed using female Balb/c nude athymic mice injected with MDA-MB-231 cells. The animals were treated with 40 mg/Kg of melatonin for 21 days. Volume of the tumors was measured with a digital caliper. Hepatocarcinoma model was developed by using the HepG2 cells in vitro, treated with 1 mM melatonin for 24 h. The expression of NF-kB protein was verified by immunohistochemistry and immunocytochemistry and quantified by optical densitometry, in vivo study and in vitro study, respectively. NF-kB gene expression was performed by quantitative RT-PCR. RESULTS: The breast cancer xenografts nude mice treated with melatonin showed reduced tumor size (P=0.0022). There was a decrease in NF-kB protein staining (P=0.0027) and gene expression (P=0.0185) in mice treated with melatonin. The opposite results were observed for the hepatocarcinoma model. HepG2 cells treated with melatonin showed an increase in the NF-kB immunostaining when compared to control cells (P=0.0042). CONCLUSION: Our results indicated that the treatment with melatonin was able to decrease both gene and protein expressions of NF-kB in breast cancer cells and, conversely, increase the transcription factor protein expression in hepatocarcinoma cells. These data highlighted a double role in the expression of NF-kB, depending on the cell type. Further studies are needed to better elucidate the action of melatonin in NF-kB, since this transcription factor acts on different signaling pathways that are fundamental for carcinogenesis.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Melatonina/farmacologia , NF-kappa B/biossíntese , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Melatonina/administração & dosagem , Melatonina/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , NF-kappa B/genética , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
Anticancer Agents Med Chem ; 16(11): 1474-1484, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27102277

RESUMO

BACKGROUND: Cancer-associated fibroblast (CAFs) are the most abundant cells in the tumor microenvironment, able to secrete growth factors and act on tumor progression. Melatonin is associated with several mechanisms of action with oncostatics and oncoprotectors effects, and also participate in the reduction of synthesis of surrounding fibroblasts and endothelial cells in breast cancer. OBJECTIVE: The objectives of this study were to determine the effectiveness of melatonin in cell viability and expression of proteins involved in angiogenesis and inflammation in triplenegative mammary tumor cell line (MDA-MB-231) and in co-culture with CAFs. METHOD: Cell viability was measured by MTT assay and the protein expression was evaluated by Membrane Antibody Array after melatonin treatment. RESULTS: Melatonin treatment (1 mM) for 48 hours reduced the cell viability of MDA-MB-231, CAFs and co-culture (p < 0.05). The semi-quantitative protein analysis showed that when monoculture of tumor cells were compared with co-culture of CAFs, there was a regulation of angiogenic and inflammatory proteins (p < 0.05). Melatonin treatment also leads a differential expression of angiogenic and inflammatory proteins in both monoculture and co-culture of tumor cells and CAFs (p < 0.05). CONCLUSION: The influence of CAFs under the tumor microenvironment was confirmed, increasing the malignancy of the tumor. In addition, melatonin is effective in both monoculture and co-culture, regulating angiogenic and inflammatory proteins that contribute to tumor progression. This study show an overview of melatonin ability in regulating angiogenic and inflammatory proteins, and opens the way for exploration of each individual protein in further studies.


Assuntos
Fibroblastos Associados a Câncer/citologia , Técnicas de Cocultura , Inflamação/tratamento farmacológico , Melatonina/farmacologia , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Humanos , Inflamação/metabolismo , Melatonina/química , Neovascularização Patológica/metabolismo , Células Tumorais Cultivadas
8.
PLoS One ; 9(12): e116247, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25549350

RESUMO

A selective inhibitor of 20-HETE synthesis, HET0016, has been reported to inhibit angiogenesis. 20-HETE has been known as a second mitogenic messenger of angiogenesis inducing growth factors. HET0016 effects were analyzed on MDA-MB-231 derived breast cancer in mouse and in vitro cell line. MDA-MB-231 tumor cells were implanted in animals' right flank and randomly assigned to early (1 and 2), starting treatments on day 0, or delayed groups (3 and 4) on day 8 after implantation of tumor. Animals received HET0016 (10 mg/kg) treatment via intraperitoneal injection for 5 days/week for either 3 or 4 weeks. Control group received vehicle treatment. Tumor sizes were measured on days 7, 14, 21, and 28 and the animals were euthanized on day 22 and 29. Proteins were extracted from the whole tumor and from cells treated with 10 µM HET0016 for 4 and 24 hrs. Protein array kits of 20 different cytokines/factors were used. ELISA was performed to observe the HIF-1α and MMP-2 protein expression. Other markers were confirmed by IHC. HET0016 significantly inhibited tumor growth in all treatment groups at all-time points compared to control (p<0.05). Tumor growth was completely inhibited on three of ten animals on early treatment group. Treatment groups showed significantly lower expression of pro-angiogenic factors compared to control at 21 days; however, there was no significant difference in HIF-1α expression after treatments. Similar results were found in vitro at 24 hrs of HET0016 treatment. After 28 days, significant increase of angiogenin, angiopoietin-1/2, EGF-R and IGF-1 pro-angiogenic factors were found (p<0.05) compared to control, as well as an higher intensity of all factors were found when compared to that of 21 day's data, suggesting a treatment resistance. HET0016 inhibited tumor growth by reducing expression of different set of pro-angiogenic factors; however, a resistance to treatment seemed to happen after 21 days.


Assuntos
Amidinas/administração & dosagem , Inibidores da Angiogênese/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Amidinas/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Ratos , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA