Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Neurosci ; 44(4)2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38124005

RESUMO

Memory formation requires coordinated control of gene expression, protein synthesis, and ubiquitin-proteasome system (UPS)-mediated protein degradation. The catalytic component of the UPS, the 26S proteasome, contains a 20S catalytic core surrounded by two 19S regulatory caps, and phosphorylation of the 19S cap regulatory subunit RPT6 at serine 120 (pRPT6-S120) has been widely implicated in controlling activity-dependent increases in proteasome activity. Recently, RPT6 was also shown to act outside the proteasome where it has a transcription factor-like role in the hippocampus during memory formation. However, little is known about the proteasome-independent function of "free" RPT6 in the brain or during memory formation and whether phosphorylation of S120 is required for this transcriptional control function. Here, we used RNA-sequencing along with novel genetic approaches and biochemical, molecular, and behavioral assays to test the hypothesis that pRPT6-S120 functions independently of the proteasome to bind DNA and regulate gene expression during memory formation. RNA-sequencing following siRNA-mediated knockdown of free RPT6 revealed 46 gene targets in the dorsal hippocampus of male rats following fear conditioning, where RPT6 was involved in transcriptional activation and repression. Through CRISPR-dCas9-mediated artificial placement of RPT6 at a target gene, we found that RPT6 DNA binding alone may be important for altering gene expression following learning. Further, CRISPR-dCas13-mediated conversion of S120 to glycine on RPT6 revealed that phosphorylation at S120 is necessary for RPT6 to bind DNA and properly regulate transcription during memory formation. Together, we reveal a novel function for phosphorylation of RPT6 in controlling gene transcription during memory formation.


Assuntos
Hipocampo , Complexo de Endopeptidases do Proteassoma , Ratos , Masculino , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Fosforilação , Hipocampo/fisiologia , DNA/metabolismo , RNA , Expressão Gênica
2.
Learn Mem ; 31(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38580378

RESUMO

Posttranslational modification of histone proteins is critical for memory formation. Recently, we showed that monoubiquitination of histone H2B at lysine 120 (H2Bub) is critical for memory formation in the hippocampus. However, the transcriptome controlled by H2Bub remains unknown. Here, we found that fear conditioning in male rats increased or decreased the expression of 86 genes in the hippocampus but, surprisingly, siRNA-mediated knockdown of the H2Bub ligase, Rnf20, abolished changes in all but one of these genes. These findings suggest that monoubiquitination of histone H2B is a crucial regulator of the transcriptome during memory formation.


Assuntos
Histonas , Memória , Transcriptoma , Ubiquitinação , Animais , Masculino , Ratos , Histonas/genética , Processamento de Proteína Pós-Traducional , Transcriptoma/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Mol Psychiatry ; 28(6): 2594-2605, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37198264

RESUMO

Females are more likely than males to develop post-traumatic stress disorder (PTSD). However, the neurobiological mechanisms responsible for these sex differences remain elusive. The ubiquitin proteasome system (UPS) is involved in fear memory formation and implicated in PTSD development. Despite this, proteasome-independent functions of the UPS have rarely been studied in the brain. Here, using a combination of molecular, biochemical, proteomic, behavioral, and novel genetic approaches, we investigated the role of proteasome-independent lysine-63 (K63)-polyubiquitination, the second most abundant ubiquitin modification in cells, in the amygdala during fear memory formation in male and female rats. Only females had increased levels of K63-polyubiquitination targeting in the amygdala following fear conditioning, which targeted proteins involved in ATP synthesis and proteasome function. CRISPR-dCas13b-mediated knockdown of K63-polyubiquitination in the amygdala via editing of the K63 codon in the major ubiquitin gene, Ubc, impaired fear memory in females, but not males, and caused a reduction in learning-related increases in ATP levels and proteasome activity in the female amygdala. These results suggest that proteasome-independent K63-polyubiquitination is selectively involved in fear memory formation in the female amygdala, where it is involved in the regulation of ATP synthesis and proteasome activity following learning. This indicates the first link between proteasome-independent and proteasome-dependent UPS functions in the brain during fear memory formation. Importantly, these data are congruent with reported sex differences in PTSD development and may contribute to our understanding of why females are more likely to develop PTSD than males.


Assuntos
Complexo de Endopeptidases do Proteassoma , Proteômica , Feminino , Masculino , Ratos , Animais , Complexo de Endopeptidases do Proteassoma/metabolismo , Tonsila do Cerebelo/metabolismo , Ubiquitina/metabolismo , Transtornos da Memória/metabolismo , Medo/fisiologia , Trifosfato de Adenosina/metabolismo
4.
Learn Mem ; 30(3): 70-73, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36921984

RESUMO

Strong evidence has implicated proteasome-mediated protein degradation in the memory consolidation process. However, due to the use of pharmacological approaches, the cell type specificity of this remains unknown. Here, we used neuron-specific and novel astrocyte-specific CRISPR-dCas9-KRAB-MECP2 plasmids to inhibit protein degradation in a cell type-specific manner in the amygdala of male rats. We found that while inhibition of neuronal, but not astrocytic, protein degradation impaired performance during the training session, both resulted in impaired contextual fear memory retention. Together, these data provide the first evidence of a cell type-specific role for protein degradation in the memory consolidation process.


Assuntos
Astrócitos , Consolidação da Memória , Ratos , Masculino , Animais , Proteólise , Memória/fisiologia , Neurônios/metabolismo , Consolidação da Memória/fisiologia , Medo/fisiologia
5.
Nutr Neurosci ; 26(4): 290-302, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35282800

RESUMO

OBJECTIVES: Previous work has shown that exposure to a high fat diet dysregulates the protein degradation process in the hypothalamus of male rodents. However, whether this occurs in a sex-independent manner is unknown. The objective of this study was to determine the effects of a short-term obesogenic diet on the ubiquitin-proteasome mediated protein degradation process in the hypothalamus of female rats. METHODS: We fed young adult female rats a high fat diet or standard rat chow for 7 weeks. At the end of the 7th week, animals were euthanized and hypothalamus nuclear and cytoplasmic fractions were collected. Proteasome activity and degradation-specific (K48) ubiquitin signaling were assessed. Additionally, we transfected female rats with CRISPR-dCas9-VP64 plasmids in the hypothalamus prior to exposure to the high fat diet in order to increase proteasome activity and determine the role of reduced proteasome function on weight gain from the obesogenic diet. RESULTS: We found that across the diet period, females gained weight significantly faster on the high fat diet than controls and showed dynamic downregulation of proteasome activity, decreases in proteasome subunit expression and an accumulation of degradation-specific K48 polyubiquitinated proteins in the hypothalamus. Notably, while our CRISPR-dCas9 manipulation was able to selectively increase some forms of proteasome activity, it was unable to prevent diet-induced proteasome downregulation or abnormal weight gain. CONCLUSIONS: Collectively, these results reveal that acute exposure to an obesogenic diet causes reductions in the protein degradation process in the hypothalamus of females.


Assuntos
Complexo de Endopeptidases do Proteassoma , Aumento de Peso , Ratos , Animais , Masculino , Feminino , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Hipotálamo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ubiquitinas/metabolismo
6.
Learn Mem ; 29(9): 256-264, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36206393

RESUMO

Reports of sex differences in the neurobiology of memory formation are becoming more prevalent. Despite this, much remains unknown about the role of sex in this process. We previously reported the first evidence of a novel epigenetic role for proteasome subunit RPT6 during memory formation in the hippocampus of male rodents whereby it associated with monoubiquitinated histone H2B (H2Bubi). Here, we used molecular, biochemical, and behavioral approaches to investigate whether RPT6 has a similar epigenetic role during memory formation in female rats. Following contextual fear conditioning, we found that RPT6 levels and DNA binding at regions coding for c-fos, the previously identified target of RPT6 in males, were unchanged in the hippocampus of females and that loss of RPT6 did not alter learning-induced increases in c-fos However, RPT6 was in complex with H2Bubi in the female hippocampus and this association increased with fear conditioning, suggesting that it could still retain an epigenetic function. Consistent with this, hippocampal siRNA-mediated knockdown of the RPT6-coding gene, Psmc5, impaired memory in females. These results suggest that while RPT6 does associate with epigenetic H2Bubi during memory formation in both males and females, it has sex-specific gene targets during the memory consolidation process.


Assuntos
Histonas , Complexo de Endopeptidases do Proteassoma , Animais , DNA/metabolismo , Epigênese Genética , Feminino , Hipocampo/metabolismo , Histonas/genética , Masculino , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Interferente Pequeno/metabolismo , Ratos
7.
Learn Mem ; 28(8): 248-253, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34266989

RESUMO

Strong evidence supports a role for protein degradation in fear memory formation. However, these data have been largely done in only male animals. Here, we found that following contextual fear conditioning, females, but not males, had increased levels of proteasome activity and K48 polyubiquitin protein targeting in the dorsal hippocampus, the latter of which occurred at chaperones or RNA processing proteins. In vivo CRISPR-dCas9-mediated repression of protein degradation in the dorsal hippocampus impaired contextual fear memory in females, but not males. These results suggest a sex-specific role for protein degradation in the hippocampus during the consolidation of a contextual fear memory.


Assuntos
Medo , Hipocampo , Animais , Feminino , Masculino , Proteólise
8.
Neurobiol Learn Mem ; 180: 107404, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33609735

RESUMO

Over the last decade, strong evidence has emerged that protein degradation mediated by the ubiquitin-proteasome system is critical for fear memory formation in the amygdala. However, this work has been done primarily in males, leaving unanswered questions about whether females also require protein degradation during fear memory formation. Here, we found that male and female rats differed in their engagement and regulation of, but not need for, protein degradation in the amygdala during fear memory formation. Male, but not female, rats had increased protein degradation in the nuclei of amygdala cells after fear conditioning. Conversely, females had elevated baseline levels of overall ubiquitin-proteasome activity in amygdala nuclei. Gene expression and DNA methylation analyses identified that females had increased baseline expression of the ubiquitin coding gene Uba52, which had increased DNA 5-hydroxymethylation (5hmc) in its promoter region, indicating a euchromatin state necessary for increased levels of ubiquitin in females. Consistent with this, persistent CRISPR-dCas9 mediated silencing of Uba52 and proteasome subunit Psmd14 in the amygdala reduced baseline protein degradation levels and impaired fear memory in male and female rats, while enhancing baseline protein degradation in the amygdala of both sexes promoted fear memory formation. These results suggest that while both males and females require protein degradation in the amygdala for fear memory formation, they differ in their baseline regulation and engagement of this process following learning. These results have important implications for understanding the etiology of sex-related differences in fear memory formation.


Assuntos
Tonsila do Cerebelo/metabolismo , Medo , Memória/fisiologia , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , Animais , Metilação de DNA , Epigênese Genética , Feminino , Aprendizagem , Masculino , Ratos , Proteínas Ribossômicas/genética , Caracteres Sexuais , Fatores Sexuais , Ubiquitinas/genética
9.
Int J Mol Sci ; 22(8)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923416

RESUMO

Memory is vital to human functioning and controls future behavioral responses [...].


Assuntos
Encéfalo/metabolismo , Memória , Animais , Encéfalo/fisiologia , Humanos
10.
Int J Mol Sci ; 22(22)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34830163

RESUMO

Epigenetic mechanisms, which include DNA methylation, a variety of post-translational modifications of histone proteins (acetylation, phosphorylation, methylation, ubiquitination, sumoylation, serotonylation, dopaminylation), chromatin remodeling enzymes, and long non-coding RNAs, are robust regulators of activity-dependent changes in gene transcription. In the brain, many of these epigenetic modifications have been widely implicated in synaptic plasticity and memory formation. Dysregulation of epigenetic mechanisms has been reported in the aged brain and is associated with or contributes to memory decline across the lifespan. Furthermore, alterations in the epigenome have been reported in neurodegenerative disorders, including Alzheimer's disease. Here, we review the diverse types of epigenetic modifications and their role in activity- and learning-dependent synaptic plasticity. We then discuss how these mechanisms become dysregulated across the lifespan and contribute to memory loss with age and in Alzheimer's disease. Collectively, the evidence reviewed here strongly supports a role for diverse epigenetic mechanisms in memory formation, aging, and neurodegeneration in the brain.


Assuntos
Envelhecimento , Doença de Alzheimer , Encéfalo , Montagem e Desmontagem da Cromatina , Disfunção Cognitiva , Epigênese Genética , Transtornos da Memória , Acetilação , Envelhecimento/genética , Envelhecimento/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Metilação de DNA/genética , Humanos , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Plasticidade Neuronal/genética , Processamento de Proteína Pós-Traducional/genética
11.
Neurobiol Learn Mem ; 174: 107286, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32745599

RESUMO

Over the last 20 years, a number of studies have provided strong support for protein degradation mediated by the ubiquitin-proteasome system in synaptic plasticity and memory formation. In this system, target substrates become covalently modified by the small protein ubiquitin through a series of enzymatic reactions involving hundreds of different ligases. While some substrates will acquire only a single ubiquitin, most will be marked by multiple ubiquitin modifications, which link together at specific lysine sites or the N-terminal methionine on the previous ubiquitin to form a polyubiquitin chain. There are at least eight known linkage-specific polyubiquitin chains a target protein can acquire, many of which are independent of the proteasome, and these chains can be homogenous, mixed, or branched in nature, all of which result in different functional outcomes and fates for the target substrate. However, as the focus has remained on protein degradation, much remains unknown about the role of these diverse ubiquitin chains in the brain, particularly during activity- and learning-dependent synaptic plasticity. Here, we review the different types and functions of ubiquitin chains and summarize evidence suggesting a role for these diverse ubiquitin modifications in synaptic plasticity and memory formation. We conclude by discussing how technological limitations have limited our ability to identify and elucidate the role of different ubiquitin chains in the brain and speculate on the future directions and implications of understanding linkage-specific ubiquitin modifications in activity- and learning-dependent synaptic plasticity.


Assuntos
Encéfalo/metabolismo , Memória/fisiologia , Plasticidade Neuronal , Poliubiquitina/metabolismo , Proteólise , Animais , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
12.
Int J Mol Sci ; 21(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256213

RESUMO

Numerous studies have shown that following retrieval, a previously consolidated memory requires increased transcriptional regulation in order to be reconsolidated. Previously, it was reported that histone H3 lysine-4 trimethylation (H3K4me3), a marker of active transcription, is increased in the hippocampus after the retrieval of contextual fear memory. However, it is currently unknown how this epigenetic mark is regulated during the reconsolidation process. Furthermore, though recent evidence suggests that neuronal activity triggers DNA double-strand breaks (DSBs) in some early-response genes, it is currently unknown if DSBs contribute to the reconsolidation of a memory following retrieval. Here, using chromatin immunoprecipitation (ChIP) analyses, we report a significant overlap between DSBs and H3K4me3 in area CA1 of the hippocampus during the reconsolidation process. We found an increase in phosphorylation of histone H2A.X at serine 139 (H2A.XpS139), a marker of DSB, in the Npas4, but not c-fos, promoter region 5 min after retrieval, which correlated with increased H3K4me3 levels, suggesting that the two epigenetic marks may work in concert during the reconsolidation process. Consistent with this, in vivo siRNA-mediated knockdown of topoisomerase II ß, the enzyme responsible for DSB, prior to retrieval, reduced Npas4 promoter-specific H2A.XpS139 and H3K4me3 levels and impaired long-term memory, indicating an indispensable role of DSBs in the memory reconsolidation process. Collectively, our data propose a novel mechanism for memory reconsolidation through increases in epigenetic-mediated transcriptional control via DNA double-strand breaks.


Assuntos
Quebras de DNA de Cadeia Dupla , Medo/fisiologia , Memória/fisiologia , Animais , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/metabolismo , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Histonas , Masculino , Rememoração Mental , Fosfosserina/metabolismo , Ratos Sprague-Dawley
13.
Learn Mem ; 26(9): 373-379, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31416910

RESUMO

O-GlcNAcylation of serine/threonine residues on target proteins occurs dynamically in postmitotic neurons of the hippocampus and may serve to control both the stability and activity of target proteins. Remarkably, the addition and removal of the O-GlcNAc posttranslational modifications are catalyzed by a pair of enzymes, the O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). More than thousands of proteins are modified by O-GlcNAcylation including epigenetic modifying enzymes. A critical target of OGT is the polycomb repressive complex 2 (PRC2) containing the histone lysine methyltransferase EZH2 that mediates trimethylation of lysine 27 on histone H3 (H3K27me3). However, whether OGT and PRC2 activity in the hippocampus couple to regulate gene transcription mechanisms during memory consolidation remains unknown. Here, we found increases in OGT expression and global O-GlcNAcylation levels in dorsal area CA1 of the hippocampus during memory consolidation. Additionally, we observed that OGT exerts control over epigenetic regulation via EZH2-H3K27me3 during memory consolidation. Blocking O-GlcNAc signaling via RNAi within dorsal area CA1 led to the global and site-specific loss of activity-dependent epigenetic plasticity at genes regulated by H3K27me3 and impairment of hippocampus-dependent memory. Together, these findings illustrate a unique epigenetic role of OGT via regulation of histone methylation mediated by EZH2 during memory consolidation of fear conditioned memories.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Epigênese Genética , Medo/fisiologia , Hipocampo/metabolismo , Consolidação da Memória/fisiologia , Animais , Feminino , Histonas/genética , Masculino , Processamento de Proteína Pós-Traducional , Ratos Sprague-Dawley
14.
J Neurosci ; 38(35): 7635-7648, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30030400

RESUMO

Memory retrieval induces a transient period of increased transcriptional and translational regulation in neurons called reconsolidation, which is regulated by the protein kinase B (AKT)-mammalian target of rapamycin (mTOR) pathway. However, it is currently unknown how activation of the AKT-mTOR pathway is regulated during the reconsolidation process. Here, we found that in male rats retrieval of a contextual fear memory transiently increased Enhancer of Zeste Homolog 2 (EZH2) levels along with increased histone H3 lysine 27 trimethylation (H3K27me3) levels, which correlated with decreased levels of phosphatase and tensin homolog (PTEN), a potent inhibitor of AKT-mTOR-dependent signaling in the hippocampus. Further experiments found increased H3K27me3 levels and DNA methylation across the Pten promoter and coding regions, indicating transcriptional silencing of the Pten gene. Pten H3K27me3 levels did not change following training or after the retrieval of a remote (old) fear memory, suggesting that this mechanism of Pten repression was specific to the reconsolidation of a new memory. In vivo siRNA-mediated knockdown of Ezh2 in the hippocampus abolished retrieval-induced increases in H3K27me3 and prevented decreases in PTEN levels. Ezh2 knockdown attenuated increases in the phosphorylation of AKT and mTOR following retrieval, which could be restored by simultaneously reducing Pten, suggesting that H3K27me3 regulates AKT-mTOR phosphorylation via repression of Pten Consistent with these results, knockdown of Ezh2 in area CA1 before retrieval impaired memory on later tests. Collectively, these results suggest that EZH2-mediated H3K27me3 plays a critical role in the repression of Pten transcription necessary for AKT-mTOR activation and memory reconsolidation following retrieval.SIGNIFICANCE STATEMENT Understanding how critical translation pathways, like mTOR-mediated protein synthesis, are regulated during the memory storage process is necessary for improving memory impairments. This study tests whether mTOR activation is coupled to epigenetic mechanisms in the hippocampus following the retrieval of a contextual fear memory. Specifically, this study evaluates the role of epigenetic modifications in the form of histone methylation in downstream mTOR translational control during learning-dependent synaptic plasticity in neurons. Considering the broad implications of transcriptional and translational mechanisms in synaptic plasticity, psychiatric, and neurological and neurodegenerative disorders, these data are of interest to the neuroscience community due to the robust and specific regulation of mTOR signaling we found to be dependent on repressive histone methylation.


Assuntos
Região CA1 Hipocampal/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste/fisiologia , Medo/fisiologia , Proteínas do Tecido Nervoso/fisiologia , PTEN Fosfo-Hidrolase/fisiologia , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Animais , Imunoprecipitação da Cromatina , Eletrochoque , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Histonas/genética , Masculino , Consolidação da Memória/fisiologia , Rememoração Mental , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , PTEN Fosfo-Hidrolase/biossíntese , PTEN Fosfo-Hidrolase/genética , Fosforilação , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley
15.
Neurobiol Learn Mem ; 157: 1-11, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30458285

RESUMO

Numerous studies have supported a critical role for the ubiquitin-proteasome system (UPS) in the memory consolidation and reconsolidation processes. The protein targets and functional role of ubiquitin-proteasome activity can vary widely across cellular compartments, however, it is unknown how UPS activity changes within the nuclear, cytoplasmic, and synaptic regions in response to learning or memory retrieval. Additionally, while previous studies have focused on degradation-specific protein polyubiquitination, it is unknown how learning alters other polyubiquitin tags that are not targeted by the proteasome. Using cellular fractionation protocols in combination with linkage-specific polyubiquitin antibodies, we examined subcellular changes in ubiquitin-proteasome activity in the amygdala during memory consolidation and reconsolidation. Following memory acquisition, overall protein ubiquitination and proteasome activity simultaneously increased in the nucleus and decreased in the synaptic and cytoplasmic regions. The nuclear increases were associated with upregulation of degradation-specific (K48) and degradation-independent (K63, M1) polyubiquitin tags, suggesting multiple functions for ubiquitin signaling within this region. Interestingly, retrieval induced a very different pattern of ubiquitin-proteasome activity in the amygdala, consisting of increases in overall protein ubiquitination and proteasome activity and K48-, K63-, and M1-polyubiquitin tags in the synaptic, but not nuclear or cytoplasmic regions. Collectively, learning and memory retrieval dynamically and differentially alter degradation-dependent and degradation-independent ubiquitin-proteasome activity across different cellular compartments, suggesting that the UPS may serve unique functions during memory consolidation and reconsolidation.


Assuntos
Tonsila do Cerebelo/metabolismo , Medo/fisiologia , Consolidação da Memória/fisiologia , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitinação , Animais , Condicionamento Clássico , Citoplasma/metabolismo , Masculino , Ratos Sprague-Dawley , Sinapses/metabolismo
16.
Neurobiol Learn Mem ; 142(Pt A): 66-78, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28232238

RESUMO

Epigenetic mechanisms such as DNA methylation and histone methylation are critical regulators of gene transcription changes during memory consolidation. However, it is unknown how these epigenetic modifications coordinate control of gene expression following reactivation of a previously consolidated memory. Here, we found that retrieval of a recent contextual fear conditioned memory increased global levels of H3 lysine 4-trimethylation (H3K4me3) and DNA 5-hydroxymethylation (5hmC) in area CA1 of the dorsal hippocampus. Further experiments revealed increased levels of H3K4me3 and DNA 5hmC within a CpG-enriched coding region of the Npas4, but not c-fos, gene. Intriguingly, retrieval of a 30-day old memory increased H3K4me3 and DNA 5hmC levels at a CpG-enriched coding region of c-fos, but not Npas4, in the anterior cingulate cortex, suggesting that while these two epigenetic mechanisms co-occur following the retrieval of a recent or remote memory, their gene targets differ depending on the brain region. Additionally, we found that in vivo siRNA-mediated knockdown of the H3K4me3 methyltransferase Mll1 in CA1 abolished retrieval-induced increases in DNA 5hmC levels at the Npas4 gene, suggesting that H3K4me3 couples to DNA 5hmC mechanisms. Consistent with this, loss of Mll1 prevented retrieval-induced increases in Npas4 mRNA levels in CA1 and impaired fear memory. Collectively, these findings suggest an important link between histone methylation and DNA hydroxymethylation mechanisms in the epigenetic control of de novo gene transcription triggered by memory retrieval.


Assuntos
Epigênese Genética , Medo/fisiologia , Giro do Cíngulo/metabolismo , Hipocampo/metabolismo , Histonas/metabolismo , Memória/fisiologia , Animais , Metilação de DNA , Masculino , Ratos , Ratos Sprague-Dawley
17.
J Physiol ; 594(4): 863-81, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26574176

RESUMO

KEY POINTS: Transcription is recruited by noradrenaline in the hippocampus. Epigenetic mechanisms are recruited by hippocampal noradrenergic receptor activation. Epigenetic regulation by noradrenaline offers a novel mechanism for long-term potentiation ABSTRACT: Noradrenaline (NA) is a neuromodulator that can effect long-lasting changes in synaptic strength such as long-term potentiation (LTP), a putative cellular mechanism for memory formation in the mammalian brain. Persistent LTP requires alterations in gene expression that may involve epigenetic mechanisms such as DNA methylation, histone acetylation and histone phosphorylation. It is known that ß-adrenergic receptors and NA can boost LTP maintenance by regulating translation. However, it is unclear whether NA can additionally engage epigenetic mechanisms to regulate transcription and boost LTP endurance. To address this issue, we probed NA-treated mouse hippocampal slices with pharmacological inhibitors targeting epigenetic regulatory pathways and discovered that NA activates ß-adrenergic receptors to boost LTP maintenance in area CA1 through DNA methylation and post-translational histone modifications. Specifically, NA paired with 100 Hz stimulation enhanced histone H3 acetylation and phosphorylation, both of which were required for NA-induced boosting of LTP maintenance. Together, our findings identify NA as a neuromodulatory transmitter capable of triggering epigenetic, transcriptional control of genes required for establishing persistent LTP in the mouse hippocampus. These modifications may contribute to the stabilization of memory.


Assuntos
Região CA1 Hipocampal/metabolismo , Epigênese Genética , Potenciação de Longa Duração , Norepinefrina/metabolismo , Receptores Adrenérgicos beta/metabolismo , Acetilação , Animais , Região CA1 Hipocampal/fisiologia , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Processamento de Proteína Pós-Traducional , Receptores Adrenérgicos beta/genética
18.
Neurobiol Learn Mem ; 128: 103-9, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26779588

RESUMO

Numerous studies have suggested that memories "destabilize" and require de novo protein synthesis in order to reconsolidate following retrieval, but very little is known about how this destabilization process is regulated. Recently, ubiquitin-proteasome mediated protein degradation has been identified as a critical regulator of memory trace destabilization following retrieval, though the specific mechanisms controlling retrieval-induced changes in ubiquitin-proteasome activity remain equivocal. Here, we found that proteasome activity is increased in the amygdala in a CaMKII-dependent manner following the retrieval of a contextual fear memory. We show that in vitro inhibition of CaMKII reversed retrieval-induced increases in proteasome activity. Additionally, in vivo pharmacological blockade of CaMKII abolished increases in proteolytic activity and activity related regulatory phosphorylation in the amygdala following retrieval, suggesting that CaMKII was "upstream" of protein degradation during the memory reconsolidation process. Consistent with this, while inhibiting CaMKII in the amygdala did not impair memory following retrieval, it completely attenuated the memory impairments that resulted from post-retrieval protein synthesis blockade. Collectively, these results suggest that CaMKII controls the initiation of the memory reconsolidation process through regulation of the proteasome.


Assuntos
Tonsila do Cerebelo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Medo/fisiologia , Consolidação da Memória/fisiologia , Rememoração Mental/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Animais , Condicionamento Clássico , Masculino , Fosforilação , Ratos Long-Evans
19.
Neurobiol Learn Mem ; 123: 110-6, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26079095

RESUMO

The retrosplenial cortex (RSC) is known to play a role in the retrieval of context memory, but its involvement in memory formation and consolidation is unclear. To better characterize the role of the RSC, we tested its involvement in the formation and retrieval of memory for trace fear conditioning, a task that requires the association of two cues separated by an empty period of time. We have previously shown that trace fear extinction requires the RSC (Kwapis, Jarome, Lee, Gilmartin, & Helmstetter, 2014) and have hypothesized that trace memory may be stored in a distributed cortical network that includes prelimbic and retrosplenial cortices (Kwapis, Jarome, & Helmstetter, 2015). Whether the RSC participates in acquiring and storing cued trace fear, however, is currently unknown. Here, we demonstrate that blocking protein synthesis in the RSC before, but not after acquisition impairs rats' memory for trace CS and context fear without affecting memory for the CS in standard delay fear conditioning. We also show that NMDA receptor blockade in the RSC transiently impairs memory retrieval for trace, but not delay memory. The RSC therefore appears to critically contribute to formation of trace and context fear memory in addition to its previously recognized role in context memory retrieval.


Assuntos
Comportamento Animal/fisiologia , Córtex Cerebral/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Memória/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Anisomicina/farmacologia , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Medo/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Rememoração Mental/fisiologia , Inibidores da Síntese de Proteínas/farmacologia , Ratos , Ratos Long-Evans , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Fatores de Tempo
20.
Learn Mem ; 22(1): 39-46, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25512576

RESUMO

The extinction of delay fear conditioning relies on a neural circuit that has received much attention and is relatively well defined. Whether this established circuit also supports the extinction of more complex associations, however, is unclear. Trace fear conditioning is a better model of complex relational learning, yet the circuit that supports extinction of this memory has received very little attention. Recent research has indicated that trace fear extinction requires a different neural circuit than delay extinction; trace extinction requires the participation of the retrosplenial cortex, but not the amygdala, as noted in a previous study. Here, we tested the roles of the prelimbic and infralimbic regions of the medial prefrontal cortex in trace and delay fear extinction by blocking NMDA receptors during extinction learning. We found that the prelimbic cortex is necessary for trace, but not for delay fear extinction, whereas the infralimbic cortex is involved in both types of extinction. These results are consistent with the idea that trace fear associations require plasticity in multiple cortical areas for successful extinction. Further, the infralimbic cortex appears to play a role in extinction regardless of whether the animal was initially trained in trace or delay conditioning. Together, our results provide new information about how the neural circuits supporting trace and delay fear extinction differ.


Assuntos
Extinção Psicológica/fisiologia , Medo/fisiologia , Córtex Pré-Frontal/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Cateteres de Demora , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Extinção Psicológica/efeitos dos fármacos , Medo/efeitos dos fármacos , Reação de Congelamento Cataléptica/efeitos dos fármacos , Reação de Congelamento Cataléptica/fisiologia , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Ratos Long-Evans , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA