RESUMO
OBJECTIVES: SMADs play one of the key roles in the TGFß signalling pathway. Therefore, through their involvement in the immune response as well as in the fibrosis process, these proteins appear to take on one of the essential functions in the pathogenesis of autoimmune connective tissue diseases such as RA. This study aimed to investigate the association of selected SNPs in SMAD2/4/7 with RA risk in the Caucasian population and disease course in RA patients. METHODS: The study was conducted on 647 patients with established RA and 496 unrelated healthy controls (HCs). All patients fulfilled the American College of Rheumatology Diagnostic classification criteria for RA (ACR 1987). The analysis has been conducted using TaqMan genotyping assay. Transcript-inferred pathogenicity score (TraP-score) has been evaluated by TrapScore. PredictSNP.2 has been used to predict the effect of amino acid substitutions. RESULTS: The present study revealed in SMAD4 a significantly higher frequency of AG rs12456284 (under codominant model OR=0.62 p=0.027 and overdominant model OR=0.59 p=0.016) and GA rs10502913 (under codominant model OR=0.65 p=0.050 and overdominant OR=0.64 p=0.033) genotypes in healthy subjects in comparison to RA patients. Additionally, very strong LD has been noted between these two genetic variants (D'=0.95 r2=0.90). Moreover, bioinformatic analysis classified rs12456284 as deleterious change with 94% prediction accuracy. SMAD2 rs1792666 and SMAD7 rs3736242 showed to have the highest association with disease course. SMAD4 rs10502913, SMAD7 rs3736242, and SMAD7 rs4464148 were associated with the concentration of creatinine. CONCLUSIONS: Our results suggested that rs12456284 and rs10502913 in SMAD4 may have a potential protective effect against RA. Particularly, SMAD2 rs1792666 and SMAD7 rs3736242 seem to be significantly associated with diseases course in RA patients in the Caucasian population.
Assuntos
Artrite Reumatoide , Doenças Autoimunes , Proteína Smad2 , Humanos , Artrite Reumatoide/diagnóstico , Artrite Reumatoide/genética , Progressão da Doença , Genótipo , Polimorfismo de Nucleotídeo Único , Proteína Smad2/genética , Proteína Smad4/genética , Proteína Smad7/genéticaRESUMO
The structure, energetics, and aromaticity of c.a. 100 constitutional isomers and tautomers of pyrido[m,n]diazepines (m = 1, 2; n = 2, 3, 4, 5; m ≠ n) were studied at the B3LYP/cc-pVTZ level. The pyrido[1,3]diazepines appear the most, while pyrido[2,4]diazepines are the least stable (ca. 26 kcal/mol). In the pyrido[1,n]diazepine group (n = 2-5), the [1,5] isomers are higher in energy by ca. 4.5 kcal/mol and the [1,4] ones by ca. 7 kcal/mol, and the pyrido[1,2]diazepines are the least stable (ca. 20 kcal/mol). All the most stable pyrido[1,n]diazepines have N-atoms near the ring's junction bond but on opposite sites. The most stable [2,n]-forms are also those with the pyridine ring N6-atom near the junction bond. Surprisingly, for the [1,2]-, [1,3]-, and [1,4]-isomer condensation types of pyridine and diazepine rings, the same N9 > N7 > N6 > N8 stability pattern obeys. The stability remains similar in a water medium simulated with the Polarizable Continuum Model of the solvent and is conserved when calculated using the CAM-B3LYP or BHandHlyp functionals. The ring's aromaticity in the pyridine[m,n]diazepines was established based on the integral INICS index resulting from the NICSzz-scan curves' integration. The integral INICS index is physically justified through its relation to the ringcurrent as demonstrated by Berger, R.J.F., et al. Phys. Chem. Chem. Phys. 2022, 24, 624. The six-membered pyrido rings have negative INICSZZ indices and can be aromatic only if they are not protonated at the N-atom. All protonated pyrido and seven-membered rings exhibit meaningful positive INICSZZ values and can be assigned as antiaromatic. However, some non-protonated pyrido rings also have substantial positive INICSZZ indices and are antiaromatic. A weak linear correlation (R2 = 0.72) between the INICSZZ values of the pyridine I(6) and diazepine I(7) rings exists and is a consequence of the communication between the π-electron systems of the two rings. The juxtaposition of the INICS descriptor of the six- and seven-membered rings and diverse electron density parameters at the Ring Critical Points (RCP) revealed good correlations only with the Electrostatic Potentials from the electrons and nuclei (ESPe and ESPn). The relationships with other RCP parameters like electron density and its Laplacian, total energy, and the Hamiltonian form of kinetic energy density were split into two parts: one nearly constant for the six-membered rings and one linearly correlating for the seven-membered rings. Thus, most of the electron density parameters at the RCP of the six-membered rings of pyridodiazepines practically do not change with the diazepine type and the labile proton position. In contrast, those of the seven-membered rings display aromaticity changes in the antiaromatic diazepine with its ring structural modifications.
RESUMO
Antidepressants target a variety of proteins in the central nervous system (CNS), the most important belonging to the family of G-protein coupled receptors and the family of neurotransmitter transporters. The increasing number of crystallographic structures of these proteins have significantly contributed to the knowledge of their mechanism of action, as well as to the design of new drugs. Several computational approaches such as molecular docking, molecular dynamics, and virtual screening are useful for elucidating the mechanism of drug action and are important for drug design. This review is a survey of molecular targets for antidepressants in the CNS and computer based strategies to discover novel compounds with antidepressant activity.
Assuntos
Antidepressivos/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Proteínas de Transporte de Neurotransmissores/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Sistema Nervoso Central/metabolismo , Desenho de Fármacos , Humanos , Simulação de Acoplamento MolecularRESUMO
Methotrexate (MTX) is the first-line therapy for rheumatoid arthritis. Nevertheless, MTX resistance is quite a common issue in clinical practice. There are some premises that aryl hydrocarbon receptor (AhR) gene battery may take part in MTX metabolism. In the present retrospective study, we analyzed genes expression of AHR genes battery associated with MTX metabolism in whole blood of RA patients with good and poor response to MTX treatment. Additionally, sequencing, genotyping and bioinformatics analysis of AHR repressor gene (AHRR) c.565C > G (rs2292596) and c.1933G > C (rs34453673) have been performed. Theoretically, both changes may have an impact on H3K36me3 and H3K27me3. Evolutionary analysis revealed that rs2292596 may be possibly damaging. Allele G in rs2292596 and DAS28 seems to be associated with a higher risk of poor response to MTX treatment in RA. RA patients with poor response to MTX treatment revealed upregulated AhR and SLC19A1 mRNA level. Treatment with IL-6 inhibitor may be helpful to overcome the low-dose MTX resistance. Analysis of gene expression revealed possible another cause of poor response to MTX treatment which is different from that observed in the case of acute lymphoblastic leukemia.
Assuntos
Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Metotrexato/uso terapêutico , Receptores de Hidrocarboneto Arílico/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Artrite Reumatoide/genética , Resistência a Medicamentos/genética , Feminino , Genes/genética , Técnicas de Genotipagem , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Proteína Carregadora de Folato Reduzido/genética , Resultado do Tratamento , Adulto JovemRESUMO
Cancers are the leading cause of deaths worldwide. In 2018, an estimated 18.1 million new cancer cases and 9.6 million cancer-related deaths occurred globally. Several previous studies have shown that the enzyme, leucine aminopeptidase is involved in pathological conditions such as cancer. On the basis of the knowledge that isoquinoline alkaloids have antiproliferative activity and inhibitory activity towards leucine aminopeptidase, the present study was conducted a study which involved database search, virtual screening, and design of new potential leucine aminopeptidase inhibitors with a scaffold based on 3,4-dihydroisoquinoline. These compounds were then filtered through Lipinski's "rule of five," and 25 081 of them were then subjected to molecular docking. Next, three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed for the selected group of compounds with the best binding score results. The developed model, calculated by leave-one-out method, showed acceptable predictive and descriptive capability as represented by standard statistical parameters r2 (0.997) and q2 (0.717). Further, 35 compounds were identified to have an excellent predictive reliability. Finally, nine selected compounds were evaluated for drug-likeness and different pharmacokinetics parameters such as absorption, distribution, metabolism, excretion, and toxicity. Our methodology suggested that compounds with 3,4-dihydroisoquinoline moiety were potentially active in inhibiting leucine aminopeptidase and could be used for further in-depth in vitro and in vivo studies.
Assuntos
Isoquinolinas/química , Leucil Aminopeptidase/química , Modelos Moleculares , Inibidores de Proteases/química , Relação Quantitativa Estrutura-Atividade , Desenho de Fármacos , Humanos , Leucil Aminopeptidase/antagonistas & inibidores , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Inibidores de Proteases/farmacologia , Reprodutibilidade dos TestesRESUMO
Interactions of 21 fentanyl derivatives with µ-opioid receptor (µOR) were studied using experimental and theoretical methods. Their binding to µOR was assessed with radioligand competitive binding assay. A uniform set of binding affinity data contains values for two novel and one previously uncharacterized derivative. The data confirms trends known so far and thanks to their uniformity, they facilitate further comparisons. In order to provide structural hypotheses explaining the experimental affinities, the complexes of the studied derivatives with µOR were modeled and subject to molecular dynamics simulations. Five common General Features (GFs) of fentanyls' binding modes stemmed from these simulations. They include: GF1) the ionic interaction between D147 and the ligands' piperidine NH⺠moiety; GF2) the N-chain orientation towards the µOR interior; GF3) the other pole of ligands is directed towards the receptor outlet; GF4) the aromatic anilide ring penetrates the subpocket formed by TM3, TM4, ECL1 and ECL2; GF5) the 4-axial substituent (if present) is directed towards W318. Except for the ionic interaction with D147, the majority of fentanyl-µOR contacts is hydrophobic. Interestingly, it was possible to find nonlinear relationships between the binding affinity and the volume of the N-chain and/or anilide's aromatic ring. This kind of relationships is consistent with the apolar character of interactions involved in ligandâ»receptor binding. The affinity reaches the optimum for medium size while it decreases for both large and small substituents. Additionally, a linear correlation between the volumes and the average dihedral angles of W293 and W133 was revealed by the molecular dynamics study. This seems particularly important, as the W293 residue is involved in the activation processes. Further, the Y326 (OH) and D147 (Cγ) distance found in the simulations also depends on the ligands' size. In contrast, neither RMSF measures nor D114/Y336 hydrations show significant structure-based correlations. They also do not differentiate studied fentanyl derivatives. Eventually, none of 14 popular scoring functions yielded a significant correlation between the predicted and observed affinity data (R < 0.30, n = 28).
Assuntos
Analgésicos Opioides/química , Fentanila/química , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Receptores Opioides mu/química , Analgésicos Opioides/farmacologia , Sítios de Ligação , Desenho de Fármacos , Fentanila/farmacologia , Concentração Inibidora 50 , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores Opioides mu/metabolismoRESUMO
The cytotoxic activity of several serotonin transporter (SERT) inhibitors and subtype of serotonin receptor 1A (5-HT1A receptor) ligands have been examined in androgen-insensitive human PC-3 prostate and neuroblastoma SH-SY5Y cancer cells. Almost all of the studied compounds (except 5-HT1A receptor agonist (2R)-(+)-8-Hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT)) exhibited absolute cytotoxic activity against the examined cancer cells. The compound 4-Fluoro-N-[2-[4-(7-methoxy-1-naphthalenyl)-1-piperazinyl]ethyl]benzamide hydrochloride (S14506) that showed highest activity against neuroblastoma tumors was the 5-HT1A receptor agonist (although not alike other 5-HT1A receptor agonists). On the other hand, the compound 6-nitro-2-(4-undecylpiperazin-1-yl)quinoline hydrochloride (AZ07) that had the highest activity against PC-3 prostate cancer cells was a compound exhibiting antagonistic activity against the 5-HT1A receptor. Thus, compounds of oncotoxic properties S14506 and AZ07 should be evaluated further for their potential use in the prevention and treatment of cancer. Most of the 15 compounds tested exhibited either agonistic or antagonistic activity for both the cyclic adenosine monophosphate (cAMP) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathways in human embryonic kidney 293 (HEK293) cells that overexpress the 5HT1AR gene. However, compounds paroxetine, N-Ac-paroxetine and 2-[4-(cyclobutylmethyl)piperazin-1-yl]-6-nitroquinoline hydrochloride (AB22) simultaneously exhibited antagonistic activity on the cAMP pathway and agonistic activity on the ERK1/2 pathway. Fluoxetine relative to compound AZ07 had almost three times lower cytotoxic activity against PC-3 prostate cancer cells. However, the proapoptotic activity of fluoxetine compared to compound AZ07 is almost two times higher which would suggest that the cytotoxic activity of both compounds may be dependent on different cell death mechanisms. Compound S14506 was found to be an antagonist of the serine-threonine protein kinase B (Akt) pathway. Prosurvival Akt activity may be reversed by Akt antagonists. Therefore, the antagonistic activity of S14506 on the Akt pathway may evoke caspase-3 expression and cytotoxicity. It appears that one should not expect a straightforward relationship between the activation of particular serotonergic pathways by selective serotonin reuptake inhibitors (SSRIs) and 5-HT1A receptor ligands and their cytotoxic or cytoprotective activity. Additionally, nuclear transcription factor κB (NF-κB), which may be involved in 5-HT-dependent biochemical pathways by coordinating different subunits in the formation of a dimer, may regulate the transcription of different transduction pathways. Therefore, it can be suggested that the mechanism of the cytotoxic activity of certain compounds (serotonergic against nonserotonergic) may depend on the compound and cancer type being examined. Docking studies showed that S14506, buspirone and spiperone bind in similar ways in the 5-HT1A receptor model and interacted with similar 5-HT1A receptor residues. S14506 and spiperone were found to be located closer to both phenylalanines in TM6 than buspirone, thus exhibiting more antagonist binding modes.
Assuntos
Carcinogênese/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Células 3T3 , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Ligação Proteica , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/química , Antagonistas do Receptor 5-HT1 de Serotonina/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/química , Inibidores Seletivos de Recaptação de Serotonina/farmacologiaRESUMO
Despite considerable advances over the past years in understanding the mechanisms of action and the role of the σ1 receptor, several questions regarding this receptor remain unanswered. This receptor has been identified as a useful target for the treatment of a diverse range of diseases, from various central nervous system disorders to cancer. The recently solved issue of the crystal structure of the σ1 receptor has made elucidating the structure-activity relationship feasible. The interaction of seven representative opioid ligands with the crystal structure of the σ1 receptor (PDB ID: 5HK1) was simulated for the first time using molecular dynamics (MD). Analysis of the MD trajectories has provided the receptor-ligand interaction fingerprints, combining information on the crucial receptor residues and frequency of the residue-ligand contacts. The contact frequencies and the contact maps suggest that for all studied ligands, the hydrophilic (hydrogen bonding) interactions with Glu172 are an important factor for the ligands' affinities toward the σ1 receptor. However, the hydrophobic interactions with Tyr120, Val162, Leu105, and Ile124 also significantly contribute to the ligand-receptor interplay and, in particular, differentiate the action of the agonistic morphine from the antagonistic haloperidol.
Assuntos
Analgésicos Opioides/química , Morfina/química , Receptores sigma/química , Analgésicos Opioides/uso terapêutico , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Ligantes , Simulação de Dinâmica Molecular , Morfina/uso terapêutico , Ligação Proteica , Relação Estrutura-AtividadeRESUMO
We report a study of a series of isoquinoline derivatives, including their synthesis, in vitro microsomal leucine aminopeptidase (LAP) inhibition and antiproliferative activity on cancer cell lines. Among fourteen tested compounds, one (compound 3b) was determined to have good activity against LAP and significant antiproliferative activity against HL-60 human promyelocytic leukemia, Burkitt's lymphoma Raji, camptothecin resistant CEM/C2 leukemia cells with mutated catalytic site of topoisomerase I, its parental cell line CCRF/CEM and LoVo colon cancer. Its influence on the cell cycle was also observed. Moreover, we have confirmed that antiproliferative activity towards cancer cells is due to LAP inhibition. Docking simulation based on positioning compound 3b into the LAP active site was performed to explore the possible binding mode. The compound was able to form hydrogen bonds with Gly362 and coordinate zinc ions, which was previously suggested to be essential for inhibitory activity. Compound 3b was also characterized with a good selectivity index for cancer versus normal mammalian cells. Toxicological studies involving examination of skin sensitization, acute skin irritation/corrosion, acute dermal toxicity, acute oral toxicity and acute eye irritation/corrosion established that compound 3b is safe for use.
Assuntos
Antineoplásicos/farmacologia , Isoquinolinas/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HL-60 , Humanos , Isoquinolinas/síntese química , Isoquinolinas/química , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
A new chromatographic method for the enantioseparation and the determination of (-)-trans-paroxetine and (+)-trans-paroxetine has been developed with the aid of amylose ovomucoid-based chiral stationary phase. The method is faster and five times more sensitive than procedures recommended previously: limit of detection and limit of quantification are 5 and 16 ng/mL, respectively [modified (Ferretti et al. in J Chromatogr B 710:157-164, 1998): 20 and 60 ng/mL]. It was carefully validated and applied for the determination of (-)-trans-paroxetine and (+)-trans-paroxetine in Parogen (Mc Dermott Laboratories Ltd.) and Xetanor (Actavis) coated tablets.
Assuntos
Amilose/química , Química Farmacêutica/métodos , Ovomucina/química , Paroxetina/análise , Paroxetina/química , Tecnologia Farmacêutica/métodos , Antidepressivos de Segunda Geração/análise , Antidepressivos de Segunda Geração/química , Técnicas de Química Analítica , Cromatografia , Cromatografia Líquida de Alta Pressão , Humanos , Limite de Detecção , Valores de Referência , Reprodutibilidade dos Testes , Estereoisomerismo , ComprimidosRESUMO
Protein-protein binding affinity prediction is important for understanding complex biochemical pathways and to uncover protein interaction networks. Quantitative estimation of the binding affinity changes caused by mutations can provide critical information for protein function annotation and genetic disease diagnoses. The binding free energies of protein-protein complexes can be predicted using several computational tools. This chapter is a summary of software developed for the prediction of binding free energies for protein-protein complexes and their mutants.
Assuntos
Biologia Computacional , Mutação , Ligação Proteica , Proteínas , Software , Termodinâmica , Proteínas/metabolismo , Proteínas/química , Proteínas/genética , Biologia Computacional/métodos , Mapeamento de Interação de Proteínas/métodos , HumanosRESUMO
Protein-protein interactions (PPIs) provide valuable insights for understanding the principles of biological systems and for elucidating causes of incurable diseases. One of the techniques used for computational prediction of PPIs is protein-protein docking calculations, and a variety of software has been developed. This chapter is a summary of software and databases used for protein-protein docking.
Assuntos
Bases de Dados de Proteínas , Simulação de Acoplamento Molecular , Mapeamento de Interação de Proteínas , Proteínas , Software , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Biologia Computacional/métodos , Ligação Proteica , HumanosRESUMO
In this study, we synthesized several imperatorin analogs using imperatorin and xanthotoxin as substrates. The anti-cholinesterase activities of all compounds were evaluated in in vitro experiments according to the modified Ellman's method. For each synthesized compound, IC50 values for both enzymes were established. Galantamine hydrobromide was used as a positive control in the enzymatic experiments. All active compounds showed selectivity toward butyrylcholinesterase (BuChE) rather than acetylcholinesterase. The most active ones were 8-(3-methylbutoxy)-psoralen and 8-hexoxypsoralen with IC50 values for BuChE of around 16.5 and 16.4 µM, respectively. The results of our study may be considered as the beginning of a search for potential anti-Alzheimer's disease drugs based on the structure of natural furocoumarins.
Assuntos
Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Furocumarinas/síntese química , Furocumarinas/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Animais , Sítios de Ligação , Galantamina/farmacologia , Simulação de Acoplamento Molecular , Relação Estrutura-AtividadeRESUMO
Six synthesized 6-nitroquipazine derivatives were examined by electron ionization (EI) and electrospray ionization (ESI) mass spectrometry in positive and negative ion mode. The compounds exhibit high affinity for the serotonin transporter (SERT) and belong to a new class of SERT inhibitors. The EI mass spectra registered in negative ion mode showed prominent molecular ions for all the compounds studied. All EI mass spectra and all ESI mass spectra showed similar fragmentation pathways of molecular ions, but the pathways differed between EI and ESI. The differences were explained with the aid of theoretical evaluation of the stability of the respective radical ions (EI MS) and protonated ions (ESI MS).
Assuntos
Quipazina/análogos & derivados , Inibidores Seletivos de Recaptação de Serotonina/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Quipazina/análiseRESUMO
Systemic lupus erythematosus (SLE) is a chronic and systemic autoimmune disease. SLE is described by production of autoantibodies and causes damage of many organs. T-cells play a crucial role in SLE pathogenesis. T-cells intensify inflammation through a number of processes, which leads to autoimmunization. CCR5 and MECP2 genes are linked with T-cells and pathogenesis of SLE. Polymorphisms in these genes are related with the prognostic factors of risk of disease onset and disease severity. The aim of this study was to estimate the influence of polymorphisms in MECP2 and CCR5 genes on the development and course of systemic lupus erythematosus. We examined 137 SLE patients and 604 healthy controls. We studied polymorphisms for CCR5 gene: rs333 and for MECP2: rs2075596, rs1734787, rs17435, and rs2239464. We genotyped our MECP2 samples and we performed a restriction fragment length polymorphism (RFLP) analysis for CCR5 samples. We showed a risk factor for allele T in rs17435 and for allele A in rs2075596 in MECP2. We noticed that MECP2 rs2075596 G/A, rs1734787 C/A, rs17435 A/T, and rs2239464 G/A polymorphisms are more prevalent in SLE patients than in healthy controls. We believe that above-mentioned MECP2 polymorphisms can be considered as SLE susceptibility factor.
Assuntos
Alelos , Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico/genética , Proteína 2 de Ligação a Metil-CpG/genética , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , Receptores CCR5/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de RiscoRESUMO
The molecular dynamics simulations of fentanyl complexed with the µ-opioid receptor (µOR) were studied using both inactive 4DKL and active 5C1M opioid receptor crystal structures. Analogous simulations in morphine with or without a ligand were done for comparison. Simulations of the inactive states were carried out in the absence and presence of the Na+ ion. The obtained fentanyl's binding mode agrees with some of the mutagenesis data, and it overlaps with that of morphine only to a minor extent. Notably, fentanyl stabilizes different rotameric states of Trp2936.48 than observed for morphine or unliganded receptor. Another difference is tighter arrangement of the interaction between Asp1473.32 and Tyr3267.43 (a link between helices TM3 and TM7) in the presence of fentanyl. Principal component analysis reveals differences in the trajectories dependent on the ligand bound. The differences found could be linked to ligand-dependent efficacy with respect to receptor intracellular signaling events.
Assuntos
Fentanila/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores Opioides mu/química , Sequência de Aminoácidos , Sítios de Ligação , Fentanila/metabolismo , Ligantes , Conformação Molecular , Estrutura Molecular , Morfina/química , Mutação , Ligação Proteica , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismoRESUMO
Fentanyl and its 11 commercially available derivatives were investigated as to their affinity for the σ1 receptor. The parent compound is a rather poor binder (IC50 = 4973 nM), but its close derivatives (benzylfentanyl or p-fluorofentanyl) have submicromolar affinities. Modelling provides a structural basis for the observed trends in activity.
RESUMO
A major problem with the selective serotonin reuptake inhibitors (SSRIs) is the delayed onset of action. A reason for that may be that the initial SSRI-induced increase in serotonin levels activates somatodendritic 5-HT(1A) autoreceptors, causing a decrease in serotonin release in major forebrain areas. It has been suggested that compounds combining inhibition of the serotonin transport protein with antagonistic effects on the 5-HT(1A) receptor will shorten the onset time. The anxiolytic drug buspirone is known as 5-HT(1A) partial agonist. In the present work, we are studying the inhibition of the serotonin transporter protein by a series of buspirone analogues by molecular modelling and by experimental affinity measurements. Models of the transporter protein were constructed using the crystal structure of the Escherichia coli major facilitator family transporter-LacY and the X-ray structure of the neurotransmitter symporter family (NSS) transporter-LeuT(Aa) as templates. The buspirone analogues were docked into both SERT models and the interactions with amino acids within the protein were analyzed. Two putative binding sites were identified on the LeuT(Aa) based model, one suggested to be a high-affinity site, and the other suggested to be a low-affinity binding site. Molecular dynamic simulations of the LacY based model in complex with ligands did not induce a helical architecture of the LacY based model into an arrangement more similar to that of the LeuT(Aa) based model.
Assuntos
Buspirona/análogos & derivados , Buspirona/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Animais , Buspirona/química , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Ligação Proteica , Ratos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas da Membrana Plasmática de Transporte de Serotonina/químicaRESUMO
In CNS, the 5-hydroxytryptamine(1A) (5-HT(1A)) receptors exist in two different populations with different behavioural and physiological effects: (1) somatodendritic autoreceptors located pre-synaptically of 5-HT containing neurons and (2) receptors located post-synaptic to 5-HT containing neurons. Clinical studies have shown that 5-HT(1A) partial agonists have anxiolytic properties, while antagonists of pre-synaptical autoreceptors shorten the onset time of selective serotonin reuptake inhibitors (SSRIs). In the present study, the pre- and post-synaptic activity of structural analogues of buspirone was evaluated in animal models. A three dimensional model of the 5-HT(1A) receptor was used to study their interaction modes and helical displacements upon receptor binding. The predicted receptor-ligand interactions indicated similarities in the receptor binding modes for all buspirone analogues, and no clear relationship between receptor contact residues and activity at pre- and post-synaptic receptors. Comparative molecular dynamics (MD) simulations for 650ps indicated that pre-synaptic antagonistic behaviour is connected to large displacements of transmembrane helix (TMH) 7 upon binding, while pre-synaptic agonistic behaviour is connected to large displacements of TMH2 and small displacements of TMH7. Post-synaptic partial agonist behaviour is connected to large displacements of TMH4 and TMH5 upon binding, while post-synaptic antagonists only slightly displace these helices.
Assuntos
Buspirona/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Animais , Sítios de Ligação , Buspirona/análogos & derivados , Ligantes , Masculino , Camundongos , Modelos Moleculares , Conformação Proteica , Ratos , Ratos Wistar , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Relação Estrutura-AtividadeRESUMO
New chromatographic method for the enantioseparation of (R,S)-tamsulosin and the determination of (R)- and (S)-tamsulosin was developed with the aid of amylose tris(3,5-dimethylphenylcarbamate) stationary phase. The method was compared to the known procedure for tamsulosin enantioseparation on cellulose tris(3,5-dimethylphenyl carbamate). Careful validation of both methods allowed to prove advantages of the new procedure: significantly better resolution as well as twice better sensitivity. The method was applied to quantification of (R)- and (S)-tamsulosin contents in prolonged release Apo-Tamis 0.4 mg hard capsules (Apotex Europe B.V) and Omnic Ocas 0.4 mg coated tablets (Astellas).