Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Blood ; 137(4): 493-499, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-32905580

RESUMO

Agammaglobulinemia is the most profound primary antibody deficiency that can occur due to an early termination of B-cell development. We here investigated 3 novel patients, including the first known adult, from unrelated families with agammaglobulinemia, recurrent infections, and hypertrophic cardiomyopathy (HCM). Two of them also presented with intermittent or severe chronic neutropenia. We identified homozygous or compound-heterozygous variants in the gene for folliculin interacting protein 1 (FNIP1), leading to loss of the FNIP1 protein. B-cell metabolism, including mitochondrial numbers and activity and phosphatidylinositol 3-kinase/AKT pathway, was impaired. These defects recapitulated the Fnip1-/- animal model. Moreover, we identified either uniparental disomy or copy-number variants (CNVs) in 2 patients, expanding the variant spectrum of this novel inborn error of immunity. The results indicate that FNIP1 deficiency can be caused by complex genetic mechanisms and support the clinical utility of exome sequencing and CNV analysis in patients with broad phenotypes, including agammaglobulinemia and HCM. FNIP1 deficiency is a novel inborn error of immunity characterized by early and severe B-cell development defect, agammaglobulinemia, variable neutropenia, and HCM. Our findings elucidate a functional and relevant role of FNIP1 in B-cell development and metabolism and potentially neutrophil activity.


Assuntos
Agamaglobulinemia/genética , Linfócitos B/patologia , Cardiomiopatia Hipertrófica/genética , Proteínas de Transporte/genética , Síndromes de Imunodeficiência/genética , Linfopenia/genética , Adulto , Animais , Linfócitos B/metabolismo , Criança , Pré-Escolar , Cromossomos Humanos Par 5/genética , Códon sem Sentido , Consanguinidade , Doença de Crohn/genética , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Cardiopatias Congênitas/genética , Humanos , Infecções/etiologia , Mutação com Perda de Função , Masculino , Camundongos , Neutropenia/genética , Linhagem , Dissomia Uniparental , Sequenciamento do Exoma
2.
Sci Immunol ; 7(68): eabi6763, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148201

RESUMO

Proteasome dysfunction can lead to autoinflammatory disease associated with elevated type I interferon (IFN-αß) and NF-κB signaling; however, the innate immune pathway driving this is currently unknown. Here, we identified protein kinase R (PKR) as an innate immune sensor for proteotoxic stress. PKR activation was observed in cellular models of decreased proteasome function and in multiple cell types from patients with proteasome-associated autoinflammatory disease (PRAAS). Furthermore, genetic deletion or small-molecule inhibition of PKR in vitro ameliorated inflammation driven by proteasome deficiency. In vivo, proteasome inhibitor-induced inflammatory gene transcription was blunted in PKR-deficient mice compared with littermate controls. PKR also acted as a rheostat for proteotoxic stress by triggering phosphorylation of eIF2α, which can prevent the translation of new proteins to restore homeostasis. Although traditionally known as a sensor of RNA, under conditions of proteasome dysfunction, PKR sensed the cytoplasmic accumulation of a known interactor, interleukin-24 (IL-24). When misfolded IL-24 egress into the cytosol was blocked by inhibition of the endoplasmic reticulum-associated degradation pathway, PKR activation and subsequent inflammatory signaling were blunted. Cytokines such as IL-24 are normally secreted from cells; therefore, cytoplasmic accumulation of IL-24 represents an internal danger-associated molecular pattern. Thus, we have identified a mechanism by which proteotoxic stress is detected, causing inflammation observed in the disease PRAAS.


Assuntos
Imunidade Inata/imunologia , Interleucinas/imunologia , eIF-2 Quinase/imunologia , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , eIF-2 Quinase/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA