Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Physiol Biochem ; 34(3): 929-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25200491

RESUMO

BACKGROUND: Matrix metalloproteinase-9 (MMP-9) is known to be implicated in the pathogenesis of many inflammatory disorders. FSL-1 (fibroblast-stimulating lipopeptide-1) induces cytokine production by monocytes/macrophages. However, it is unclear whether FSL-1 is also able to induce MMP-9 production. Herein, we determined whether FSL-1 could induce MMP-9 production, and if so, which signal transduction pathway(s) were involved. METHODS: MMP-9 expression was assessed with real-time qPCR and ELISA. Signaling pathways were studied by using THP1-XBlue™ cells, THP1-XBlue™-defMyD cells, anti-TLR2 mAb and pharmacological inhibitors. Phospho and total proteins were determined by Western blotting. RESULTS: FSL-1 induces MMP-9 expression (P<0.001) at both mRNA and protein levels in human monocytic THP-1 cells. Elevated activity (P<0.001) of NF-κB/AP-1 was also observed in FSL-1-treated THP-1 cells. FSL-1-induced MMP-9 secretion was markedly suppressed either by neutralizing anti-TLR-2 antibody or by inhibiting clathrin-dependent endocytosis. Furthermore, MyD88(-/-) THP-1 cells did not express MMP-9 in response to FSL-1 treatment. By small interfering RNA-mediated knockdown, we also show that FSL-1-induced up-regulation of MMP-9 requires MyD88. Pre-treatment of THP-1 cells with inhibitors of JNK (SP600125), MEK/ERK (U0126; PD98056; XMD 8-92), p38 MAPK (SB203580) and NF-κB (BAY11-7085, Triptolide, Resveratrol) significantly suppressed (P<0.05) MMP-9 gene expression and NF-κB/AP-1 transcription factors activity. CONCLUSION: These findings provide the first evidence that FSL-1 induces TLR-2-dependent MMP-9 gene expression which requires the recruitment of MyD88 and leads to activation of MEK1/2 /ERK 1/2, MEK5/ERK5, JNK, p38 MAPK and NF-κB/AP-1.


Assuntos
Diglicerídeos/farmacologia , Metaloproteinase 9 da Matriz/biossíntese , NF-kappa B/metabolismo , Oligopeptídeos/farmacologia , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Fator de Transcrição AP-1/metabolismo , Western Blotting , Linhagem Celular , Humanos , Reação em Cadeia da Polimerase em Tempo Real
2.
Eur J Pharmacol ; 791: 675-685, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27693517

RESUMO

Gestational carbenoxolone exposure inhibits placental 11ß-hydroxysteroid dehydrogenase (11ß-HSD), the physiological barrier for glucocorticoids, which increases fetal exposure to glucocorticoids and induces intrauterine growth restriction (IUGR). We hypothesized that carbenoxolone exposure influences the expression of placental estrogen receptors-α and ß (ERα & ERß) and p53 leading to inhibited fetal and placental growth. Pregnant Sprague-Dawley rats were injected twice daily with either carbenoxolone (10mg/kg; s.c.) or vehicle (control group) from gestational days (dg) 12 onwards. Maternal blood and placentas were collected on 16 dg, 19 dg and 21 dg. The expression of ERα, ERß and p53 were studied in placental basal and labyrinth zones by RT-PCR, Western blotting and immunohistochemistry. Carbenoxolone did not affect placental and fetal body weights, but ELISA showed decreased estradiol levels on 19 dg and 21 dg, and increased maternal luteinizing hormone levels on all dg. The follicle stimulating hormone levels decreased on 16 dg and 19 dg, and increased on 21 dg. Carbenoxolone decreased ERα mRNA levels on 16 dg in both zones and its protein level on 19 dg in the labyrinth zone. However, carbenoxolone increased ERß mRNA levels on 19 dg and 21 dg and protein levels on 16 dg and 19 dg in the labyrinth zone. The p53 mRNA levels increased on all dg, but its protein levels increased on 21 dg in both zones. In conclusion, carbenoxolone exposure changes placental p53, ERα, ERß expression in favor of cell death but these changes do not induce IUGR in rats.


Assuntos
Carbenoxolona/efeitos adversos , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Exposição Materna/efeitos adversos , Placenta/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Feminino , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Masculino , Mães , Hipófise/efeitos dos fármacos , Hipófise/metabolismo , Placenta/citologia , Placenta/metabolismo , Gravidez , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA