Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Exp Cell Res ; 429(2): 113646, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37271249

RESUMO

Wnt signaling drives nuclear translocation of ß-catenin and its subsequent association with the DNA-bound TCF/LEF transcription factors, which dictate target gene specificity by recognizing Wnt responsive elements across the genome. ß-Catenin target genes are therefore thought to be collectively activated upon Wnt pathway stimulation. However, this appears in contrast with the non-overlapping patterns of Wnt target gene expression in several contexts, including early mammalian embryogenesis. Here we followed Wnt target gene expression in human embryonic stem cells after Wnt pathway stimulation at a single-cell resolution. Cells changed gene expression program over time consistent with three key developmental events: i) loss of pluripotency, ii) induction of Wnt target genes, and iii) mesoderm specification. Contrary to our expectation, not all cells displayed equal amplitude of Wnt target gene activation; rather, they distributed in a continuum from strong to weak responders when ranked based on the expression of the target AXIN2. Moreover, high AXIN2 did not always correspond to elevated expression of other Wnt targets, which were activated in different proportions in individual cells. The uncoupling of Wnt target gene expression was also identified in single cell transcriptomics profiling of other Wnt-responding cell types, including HEK293T, murine developing forelimbs, and human colorectal cancer. Our finding underlines the necessity to identify additional mechanisms that explain the heterogeneity of the Wnt/ß-catenin-mediated transcriptional outputs in single cells.


Assuntos
Via de Sinalização Wnt , beta Catenina , Camundongos , Humanos , Animais , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , Células HEK293 , Fatores de Transcrição TCF/metabolismo , Expressão Gênica , Mamíferos/genética
2.
Diabetologia ; 62(3): 459-472, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30478640

RESUMO

AIMS/HYPOTHESIS: The initial stages of type 1 diabetes are characterised by an aberrant islet inflammation that is in part regulated by the interaction between type 1 diabetes susceptibility genes and environmental factors. Chromosome 16p13 is associated with type 1 diabetes and CLEC16A is thought to be the aetiological gene in the region. Recent gene expression analysis has, however, indicated that SNPs in CLEC16A modulate the expression of a neighbouring gene with unknown function named DEXI, encoding dexamethasone-induced protein (DEXI). We therefore evaluated the role of DEXI in beta cell responses to 'danger signals' and determined the mechanisms involved. METHODS: Functional studies based on silencing or overexpression of DEXI were performed in rat and human pancreatic beta cells. Beta cell inflammation and apoptosis, driven by a synthetic viral double-stranded RNA, were evaluated by real-time PCR, western blotting and luciferase assays. RESULTS: DEXI-silenced beta cells exposed to a synthetic double-stranded RNA (polyinosinic:polycytidylic acid [PIC], a by-product of viral replication) showed reduced activation of signal transducer and activator of transcription (STAT) 1 and lower production of proinflammatory chemokines that was preceded by a reduction in IFNß levels. Exposure to PIC increased chromatin-bound DEXI and IFNß promoter activity. This effect on IFNß promoter was inhibited in DEXI-silenced beta cells, suggesting that DEXI is implicated in the regulation of IFNß transcription. In a mirror image of knockdown experiments, DEXI overexpression led to increased levels of STAT1 and proinflammatory chemokines. CONCLUSIONS/INTERPRETATION: These observations support DEXI as the aetiological gene in the type 1 diabetes-associated 16p13 genomic region, and provide the first indication of a link between this candidate gene and the regulation of local antiviral immune responses in beta cells. Moreover, our results provide initial information on the function of DEXI.


Assuntos
Proteínas de Ligação a DNA/genética , Inflamação/genética , Células Secretoras de Insulina/metabolismo , Interferon Tipo I/metabolismo , Proteínas de Membrana/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/genética , Animais , Apoptose/genética , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Células Secretoras de Insulina/patologia , Proteínas de Membrana/metabolismo , Polimorfismo de Nucleotídeo Único , RNA de Cadeia Dupla , Ratos
3.
J Pediatr Gastroenterol Nutr ; 67(2): 225-231, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29601440

RESUMO

OBJECTIVE: The aim of the study is to identify additional celiac disease associated loci in the major histocompatibility complex (MHC) independent from classical HLA risk alleles (HLA-DR3-DQ2) and to characterize their potential functional impact in celiac disease pathogenesis at the intestinal level. METHODS: We performed a high-resolution single-nucleotide polymorphism (SNP) genotyping of the MHC region, comparing HLA-DR3 homozygous celiac patients and non-celiac controls carrying a single copy of the B8-DR3-DQ2 conserved extended haplotype. Expression level of potential novel risk genes was determined by RT-PCR in intestinal biopsies and in intestinal and immune cells isolated from control and celiac individuals. Small interfering RNA-driven silencing of selected genes was performed in the intestinal cell line T84. RESULTS: MHC genotyping revealed 2 associated SNPs, one located in TRIM27 gene and another in the non-coding gene HCG14. After stratification analysis, only HCG14 showed significant association independent from HLA-DR-DQ loci. Expression of HCG14 was slightly downregulated in epithelial cells isolated from duodenal biopsies of celiac patients, and eQTL analysis revealed that polymorphisms in HCG14 region were associated with decreased NOD1 expression in duodenal intestinal cells. CONCLUSIONS: We have successfully employed a conserved extended haplotype-matching strategy and identified a novel additional celiac disease risk variant in the lncRNA HCG14. This lncRNA seems to regulate the expression of NOD1 in an allele-specific manner. Further functional studies are needed to clarify the role of HCG14 in the regulation of gene expression and to determine the molecular mechanisms by which the risk variant in HCG14 contributes to celiac disease pathogenesis.


Assuntos
Doença Celíaca/genética , Predisposição Genética para Doença , Antígeno HLA-DR3/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , RNA Longo não Codificante/genética , Estudos de Casos e Controles , Doença Celíaca/metabolismo , Doença Celíaca/patologia , Criança , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único
4.
Hum Mol Genet ; 23(5): 1298-310, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24163129

RESUMO

It is known that the NFκB route is constitutively upregulated in celiac disease (CD), an immune-mediated disorder of the gut caused by intolerance to ingested gluten. Our aim was to scrutinize the expression patterns of several of the most biologically relevant components of the NFκB route in intestinal biopsies from active and treated patients and after in vitro gliadin challenge, and to assess normalization of the expression using an inhibitor of the MALT1 paracaspase. The expression of 93 NFκB genes was measured by RT-PCR in a set of uncultured active and treated CD and control biopsies, and in cultured biopsy series challenged with gliadin, the NFκB modulator, both compounds and none. Methylation of eight genes involved in NFκB signaling was analyzed by conventional pyrosequencing. Groups were compared and Pearson's correlation matrixes were constructed to check for coexpression and co-methylation. Our results confirm the upregulation of the NFκB pathway and show that constitutively altered genes usually belong to the core of the pathway and have central roles, whereas genes overexpressed only in active CD are more peripheral. Additionally, this is the first work to detect methylation level changes in celiac intestinal mucosa. Coexpression is very common in controls, whereas gliadin challenge and especially chronic inflammation present in untreated CD result in the disruption of the regulatory equilibrium. In contrast, co-methylation occurs more often in active CD. Importantly, NFκB modulation partially restores coregulation, opening the door to future therapeutic possibilities and targets.


Assuntos
Doença Celíaca/genética , Doença Celíaca/metabolismo , Regulação da Expressão Gênica , NF-kappa B/metabolismo , Análise por Conglomerados , Metilação de DNA , Expressão Gênica , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Inflamação/genética , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Regiões Promotoras Genéticas , Transdução de Sinais
5.
J Pediatr Gastroenterol Nutr ; 58(6): 762-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24552675

RESUMO

OBJECTIVE: The aim of the present study was to characterize the deregulation of epithelial tight junction genes and investigate its reversibility on removal of dietary gluten in small intestinal mucosa in celiac disease (CD). METHODS: The expression levels of 23 genes related to tight junctions were studied in biopsies from 16 patients with active CD and compared with biopsies from the same patients taken after 2 years on gluten-free diet (GFD) and with 16 non-CD controls. RESULTS: Nine genes showed altered expression levels in patients with active disease (CLDN2, PARD6A, ZAK, SYMPK, MYH14, and ACTB were upregulated, whereas MAGI1, TJP1, and PPP2R3A were downregulated). Alterations were reversible after 2 years on treatment, except for PPP2R3A, implicated in the negative control of cell growth and division. At the biological network level, important dysfunctions in several processes within the pathway were observed, including intestinal permeability, apicobasal polarity, and cell proliferation. CONCLUSIONS: Our work confirms the involvement of tight junction genes related to permeability, polarity, and cell proliferation in the epithelial destruction observed in CD. Coexpression patterns of several genes support the idea of a common regulatory mechanism that seems to be altered in active CD. In general, GFD normalization confirms the reversibility of the process, except for the constitutive downregulation of PPP2R3A suggestive of a genetic implication. Further studies in proteins and cells or tissues are necessary to confirm these findings.


Assuntos
Doença Celíaca/genética , Expressão Gênica , Mucosa Intestinal/patologia , Intestino Delgado/patologia , Junções Íntimas , Doença Celíaca/dietoterapia , Polaridade Celular , Proliferação de Células , Criança , Pré-Escolar , Dieta Livre de Glúten , Regulação para Baixo , Humanos , Lactente , Masculino , Permeabilidade , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismo
6.
Methods Cell Biol ; 179: 21-38, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37625877

RESUMO

Multicellular organisms need epithelial barriers to remain compartmentalized and protected from external influences. Although much progress has been made in understanding barrier integrity disruption in Celiac disease (CD), the regulatory and genetic mechanisms underlying the increased intestinal epithelial flux are still unknown. As we learn more about the regulation of permeability in homeostasis and pathogenesis, we will be able to develop strategies to strengthen the epithelial barrier function in intestinal disorders, including CD. For this purpose, Ussing chambers are increasingly used in native tissue, such as gut mucosa or cell monolayers, to assess the integrity of the barrier. In particular, the Ussing chambers allow the measurement of paracellular and transcellular parameters of CD small intestinal biopsies under physiologically specific conditions. In diverse types of diseases, this method is commonly used to determine epithelial barrier defects, but its application to CD has not yet been widely expanded. To provide a great model of barrier ex vivo studies in CD, we facilitate a standard protocol to measure paracellular and transcellular permeability using the Ussing chamber.


Assuntos
Doença Celíaca , Humanos , Biópsia , Homeostase , Permeabilidade
7.
Cell Syst ; 14(7): 563-581.e7, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37473729

RESUMO

Wnt signaling orchestrates gene expression via its effector, ß-catenin. However, it is unknown whether ß-catenin binds its target genomic regions simultaneously and how this impacts chromatin dynamics to modulate cell behavior. Using a combination of time-resolved CUT&RUN against ß-catenin, ATAC-seq, and perturbation assays in different cell types, we show that Wnt/ß-catenin physical targets are tissue-specific, ß-catenin "moves" on different loci over time, and its association to DNA accompanies changing chromatin accessibility landscapes that determine cell behavior. In particular, Wnt/ß-catenin progressively shapes the chromatin of human embryonic stem cells (hESCs) as they undergo mesodermal differentiation, a behavior that we define as "plastic." In HEK293T cells, on the other hand, Wnt/ß-catenin drives a transient chromatin opening, followed by re-establishment of the pre-stimulation state, a response that we define as "elastic." Future experiments shall assess whether other cell communication mechanisms, in addition to Wnt signaling, are ruled by time, cellular idiosyncrasies, and chromatin constraints. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Via de Sinalização Wnt , beta Catenina , Humanos , Via de Sinalização Wnt/genética , beta Catenina/genética , Células HEK293 , Genômica , Cromatina/genética
8.
Int Rev Cell Mol Biol ; 358: 105-132, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33707052

RESUMO

Epithelial barriers are essential to maintain multicellular organisms well compartmentalized and protected from external environment. In the intestine, the epithelial layer orchestrates a dynamic balance between nutrient absorption and prevention of microorganisms, and antigen intrusion. Intestinal barrier function has been shown to be altered in coeliac disease but whether it contributes to the pathogenesis development or if it is merely a phenomenon secondary to the aberrant immune response is still unknown. The tight junction complexes are multiprotein cell-cell adhesions that seal the epithelial intercellular space and regulate the paracellular permeability of ions and solutes. These structures have a fundamental role in epithelial barrier integrity as well as in signaling mechanisms that control epithelial-cell polarization, the formation of apical domains and cellular processes such as cell proliferation, migration, differentiation, and survival. In coeliac disease, the molecular structures and function of tight junctions appear disrupted and are not completely recovered after treatment with gluten-free diet. Moreover, zonulin, the only known physiological regulator of the tight junction permeability, appears augmented in autoimmune conditions associated with TJ dysfunction, including coeliac disease. This chapter will examine recent discoveries about the molecular architecture of tight junctions and their functions. We will discuss how different factors contribute to tight junction disruption and intestinal barrier impairment in coeliac disease. To conclude, new insights into zonulin-driven disruption of tight junction structures and barrier integrity in coeliac disease are presented together with the advancements in novel therapy to treat the barrier defect seen in pathogenesis.


Assuntos
Doença Celíaca/patologia , Células Epiteliais/patologia , Junções Íntimas/metabolismo , Animais , Doença Celíaca/genética , Doença Celíaca/terapia , Permeabilidade da Membrana Celular , Humanos , Sistema Imunitário/patologia , Fígado/lesões , Fígado/patologia
9.
Genes (Basel) ; 11(7)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645906

RESUMO

Semen changes the gene expression in endometrial and oviductal tissues modulating important processes for reproduction. We tested the hypothesis that mating and/or sperm-free seminal plasma deposition in the reproductive tract affect the expression of genes associated with sperm-lining epithelium interactions, ovulation, and pre-implantation effects (nerve growth factor, NGF; α/ß hydrolase domain-containing protein 2, ABHD2; C-terminal tensin-like protein, CTEN or TNS4; and versican, VCAN) in the period 10-72 h post-mating. In Experiment 1, does (n = 9) were treated with gonadotropin-releasing hormone (GnRH) (control), GnRH-stimulated, and vaginally infused with sperm-free seminal plasma (SP-AI), or GnRH-stimulated and naturally mated (NM). In Experiment 2, does (n = 15) were GnRH-stimulated and naturally mated. Samples were retrieved from the internal reproductive tracts (cervix-to-infundibulum) 20 h post-treatment (Experiment 1) or sequentially collected at 10, 24, 36, 68, or 72 h post-mating (Experiment 2, 3 does/period). All samples were processed for gene expression analysis by quantitative PCR. Data showed an upregulation of endometrial CTEN and NGF by NM, but not by SP-AI. The findings suggest that the NGF gene affects the reproductive tract of the doe during ovulation and beyond, influencing the maternal environment during early embryonic development.


Assuntos
Endométrio/metabolismo , Fator de Crescimento Neural/genética , Serina Proteases/genética , Interações Espermatozoide-Óvulo , Tensinas/genética , Versicanas/genética , Animais , Endométrio/efeitos dos fármacos , Feminino , Hormônio Liberador de Gonadotropina/efeitos dos fármacos , Masculino , Fator de Crescimento Neural/metabolismo , Coelhos , Sêmen/metabolismo , Serina Proteases/metabolismo , Tensinas/metabolismo , Versicanas/metabolismo
10.
Animals (Basel) ; 10(11)2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228207

RESUMO

Rabbits are interesting as research animal models for reproduction, due to their condition of species of induced ovulation, with the release of endogenous gonadotropin-releasing hormone (GnRH) due to coitus. Glucocorticoid (GC) signaling, crucial for physiological homeostasis, is mediated through a yet unclear mechanism, by the GC receptor (NR3C1/GR). After mating, the female reproductive tract undergoes dynamic modifications, triggered by gene transcription, a pre-amble for fertilization and pregnancy. This study tested the hypothesis that when ovulation is induced, the expression of NR3C1 is influenced by sperm-free seminal plasma (SP), similarly to after mating (whole semen), along the different segments of the internal reproductive tract of female rabbits. Semen (mating) was compared to vaginal infusion of sperm-free SP (Experiment 1), and changes over time were also evaluated, i.e., 10, 24, 36, 68, and 72 h post-mating, corresponding to specific stages, i.e., ovulation, fertilization, and the interval of early embryo development up to the morula stage (Experiment 2). All does were treated with GnRH to induce ovulation. Samples were retrieved from seven segments of the reproductive tract (from the cervix to infundibulum), at 20 h post-mating or sperm-free SP infusion (Experiment 1) or at 10, 24, 36, 68, and 72 h post-mating (Experiment 2). Gene expression of NR3C1 was analyzed by qPCR. Results showed an increase in NR3C1 expression in the infundibulum compared to the other anatomical regions in the absence of spermatozoa when sperm-free SP infusion was performed (Experiment 1). Moreover, during the embryo transport through the oviduct, the distal isthmus was time-course upregulated, especially at 72 h, when morulae are retained in this anatomical region, while it was downregulated in the distal uterus at 68 h (Experiment 2). The overall results suggest that NR3C1, the GC receptor gene, assessed in the reproductive tract of does for the first time, shows differential expression changes during the interval of oviductal and uterine embryo transport that may imply a relevant role of the GC action, not only close to the site of ovulation and fertilization, but also in the endometrium.

11.
Animals (Basel) ; 10(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255666

RESUMO

The maternal environment modulates immune responses to facilitate embryo development and ensure pregnancy. Unraveling this modulation could improve the livestock breeding systems. Here it is hypothesized that the exposure of the female rabbit reproductive tract to semen, as well as to early embryos, modulates inflammation and angiogenesis among different tissue segments. qPCR analysis of the gene expression changes of the anti-inflammatory interleukin-10 (IL10) and transforming growth factor beta family (TGFß1-3) and the angiogenesis mediator vascular endothelial growth factor (VEGF-A) were examined in response to mating or insemination with sperm-free seminal plasma (SP). Reproductive tract segment (cervix to infundibulum) samples were obtained in Experiment 1, 20 h after gonadotropin-releasing hormone (GnRH) stimulation (control), natural mating (NM) or vaginal infusion with sperm-free SP (SP-AI). Additionally, segmented samples were also obtained at 10, 24, 36, 68 or 72 h after GnRH-stimulation and natural mating (Experiment 2). The results of gene expression, analyzed by quantitative PCR, showed that NM effects were mainly localized in the uterine tissues, depicting clear temporal variation, while SP-AI effects were restricted to the oviduct. Changes in anti-inflammatory and angiogenesis mediators indicate an early response in the uterus and a late modulation in the oviduct either induced by semen or preimplantation embryos. This knowledge could be used in the implementation of physiological strategies in breeding systems to face the new challenges on rabbit productivity and sustainability.

12.
Elife ; 92020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32808927

RESUMO

BCL9 and PYGO are ß-catenin cofactors that enhance the transcription of Wnt target genes. They have been proposed as therapeutic targets to diminish Wnt signaling output in intestinal malignancies. Here we find that, in colorectal cancer cells and in developing mouse forelimbs, BCL9 proteins sustain the action of ß-catenin in a largely PYGO-independent manner. Our genetic analyses implied that BCL9 necessitates other interaction partners in mediating its transcriptional output. We identified the transcription factor TBX3 as a candidate tissue-specific member of the ß-catenin transcriptional complex. In developing forelimbs, both TBX3 and BCL9 occupy a large number of Wnt-responsive regulatory elements, genome-wide. Moreover, mutations in Bcl9 affect the expression of TBX3 targets in vivo, and modulation of TBX3 abundance impacts on Wnt target genes transcription in a ß-catenin- and TCF/LEF-dependent manner. Finally, TBX3 overexpression exacerbates the metastatic potential of Wnt-dependent human colorectal cancer cells. Our work implicates TBX3 as context-dependent component of the Wnt/ß-catenin-dependent transcriptional complex.


Assuntos
Proteínas com Domínio T/genética , Fatores de Transcrição/genética , Via de Sinalização Wnt , Animais , Feminino , Células HCT116 , Humanos , Masculino , Camundongos , Especificidade de Órgãos , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Peixe-Zebra
13.
Front Vet Sci ; 7: 611598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330727

RESUMO

Despite its advantages for pig breeding, embryo transfer (ET) has a major handicap: high embryo mortality during the pre- and implantation period, probably caused by divergent phenomena of tolerance between the immunologically unrelated (i.e., allogeneic) embryos and the recipient sow. Thus, to reach a similar maternal tolerance as in conventional breeding by artificial insemination (AI) would be the key to ET-success. For this reason, we studied the expression of the leukemia inhibitory factor (LIF) cytokine and its receptor in the pig endometrium during the implantation period (days 18 and 24) in sows subjected to ET (AL group) vs. post-cervical-AI controls (Hemi-AL group). Quantification of expression was performed at both mRNA (rt-qPCR) and protein (WB) levels. The expression of endometrial LIF on day 24 was considerably lower in ET than in AI pregnancies. Correlations between endometrial mRNA levels of LIF and LIF-R showed that, contrary to early AI-pregnancies, ET-pregnancies lack an inverse relation between cytokine and receptor levels. In conclusion, ET-pregnancies lack sufficient endometrial levels of LIF to develop adequate immunotolerance mechanisms to prevent the rejection of allogeneic ET-embryos.

14.
Sci Rep ; 9(1): 4220, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862814

RESUMO

N6-methyladenosine (m6A) is the most common and abundant RNA modification. Recent studies have shown its importance in the regulation of several biological processes, including the immune response, and different approaches have been developed in order to map and quantify m6A marks. However, site specific detection of m6A methylation has been technically challenging, and existing protocols are long and tedious and often involve next-generation sequencing. Here, we describe a simple RT-QPCR based approach for the relative quantification of candidate m6A regions that takes advantage of the diminished capacity of BstI enzyme to retrotranscribe m6A residues. Using this technique, we have been able to confirm the recently described m6A methylation in the 3'UTR of SOCS1 and SOCS3 transcripts. Moreover, using the method presented here, we have also observed alterations in the relative levels of m6A in specific motifs of SOCS genes in celiac disease patients and in pancreatic ß-cells exposed to inflammatory stimuli.


Assuntos
Regiões 3' não Traduzidas , Adenosina/análogos & derivados , Desoxirribonuclease BamHI/química , Motivos de Nucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adenosina/genética , Adenosina/metabolismo , Células CACO-2 , Humanos , Metilação , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
15.
Front Nutr ; 6: 187, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921880

RESUMO

Celiac disease (CD) patients present a loss of intestinal barrier function due to structural alterations in the tight junction (TJ) network, the most apical unions between epithelial cells. The association of TJ-related gene variants points to an implication of this network in disease susceptibility. This work aims to characterize the functional implication of TJ-related, disease-associated loci in CD pathogenesis. We performed an association study of 8 TJ-related gene variants in a cohort of 270 CD and 91 non-CD controls. The expression level of transcripts located in the associated SNP region was analyzed by RT-PCR in several human tissues and in duodenal biopsies of celiac patients and non-CD controls. (si)RNA-driven silencing combined with gliadin in the Caco2 intestinal cell line was used to analyze the implication of transcripts from the associated region in the regulation of TJ genes. We replicated the association of rs6962966*A variant [p = 0.0029; OR = 1.88 (95%1.24-2.87)], located in an intron of TJ-related MAGI2 coding gene and upstream of RP4-587D13.2 transcript, bioinformatically classified as a long non-coding RNA (lncRNA). The expression of both genes is correlated and constitutively downregulated in CD intestine. Silencing of lncRNA decreases the levels of MAGI2 protein. At the same time, silencing of MAGI2 affects the expression of several TJ-related genes. The associated region is functionally altered in disease, probably affecting CD-related TJ genes.

16.
Sci Rep ; 9(1): 1298, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718669

RESUMO

The Human Leucocyte Antigen (HLA) locus and other DNA sequence variants identified in Genome-Wide Association (GWA) studies explain around 50% of the heritability of celiac disease (CD). However, the pathogenesis of CD could be driven by other layers of genomic information independent from sequence variation, such as DNA methylation, and it is possible that allele-specific methylation explains part of the SNP associations. Since the DNA methylation landscape is expected to be different among cell types, we analyzed the methylome of the epithelial and immune cell populations of duodenal biopsies in CD patients and controls separately. We found a cell type-specific methylation signature that includes genes mapping to the HLA region, namely TAP1 and HLA-B. We also performed Immunochip SNP genotyping of the same samples and interrogated the expression of some of the affected genes. Our analysis revealed that the epithelial methylome is characterized by the loss of CpG island (CGI) boundaries, often associated to altered gene expression, and by the increased variability of the methylation across the samples. The overlap between differentially methylated positions (DMPs) and CD-associated SNPs or variants contributing to methylation quantitative trait loci (mQTLs) is minimal. In contrast, there is a notable enrichment of mQTLs among the most significant CD-associated SNPs. Our results support the notion that DNA methylation alterations constitute a genotype-independent event and confirm its role in the HLA region (apart from the well-known, DQ allele-specific effect). Finally, we find that a fraction of the CD-associated variants could exert its phenotypic effect through DNA methylation.


Assuntos
Doença Celíaca/etiologia , Metilação de DNA , Epigenoma , Genótipo , Antígenos HLA/genética , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Biópsia , Doença Celíaca/metabolismo , Doença Celíaca/patologia , Ilhas de CpG , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Antígenos HLA/imunologia , Humanos , Mucosa Intestinal/patologia , Masculino , Regiões Promotoras Genéticas
17.
J Vis Exp ; (137)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30059028

RESUMO

The purpose of this protocol is to fractionate human intestinal tissue obtained by endoscopy into nuclear and cytoplasmic compartments for the localization analysis of specific proteins or protein complexes in different tissue states (i.e., healthy vs. disease). This method is useful for the fractionation of both fresh and frozen intestinal tissue samples; it is easily accessible for all laboratories and not time consuming.


Assuntos
Conteúdo Gastrointestinal/química , Congelamento , Humanos
18.
Genes (Basel) ; 9(5)2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748492

RESUMO

The aim of this study was to construct celiac co-expression patterns at a whole genome level and to identify transcription factors (TFs) that could drive the gliadin-related changes in coordination of gene expression observed in celiac disease (CD). Differential co-expression modules were identified in the acute and chronic responses to gliadin using expression data from a previous microarray study in duodenal biopsies. Transcription factor binding site (TFBS) and Gene Ontology (GO) annotation enrichment analyses were performed in differentially co-expressed genes (DCGs) and selection of candidate regulators was performed. Expression of candidates was measured in clinical samples and the activation of the TFs was further characterized in C2BBe1 cells upon gliadin challenge. Enrichment analyses of the DCGs identified 10 TFs and five were selected for further investigation. Expression changes related to active CD were detected in four TFs, as well as in several of their in silico predicted targets. The activation of TFs was further characterized in C2BBe1 cells upon gliadin challenge, and an increase in nuclear translocation of CAMP Responsive Element Binding Protein 1 (CREB1) and IFN regulatory factor-1 (IRF1) in response to gliadin was observed. Using transcriptome-wide co-expression analyses we are able to propose novel genes involved in CD pathogenesis that respond upon gliadin stimulation, also in non-celiac models.

19.
Eur J Hum Genet ; 24(12): 1831-1834, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27650971

RESUMO

To identify candidate genes in celiac disease (CD), we reanalyzed the whole Immunochip CD cohort using a different approach that clusters individuals based on immunoancestry prior to disease association analysis, rather than by geographical origin. We detected 636 new associated SNPs (P<7.02 × 10-07) and identified 5 novel genomic regions, extended 8 others previously identified and also detected 18 isolated signals defined by one or very few significant SNPs. To test whether we could identify putative candidate genes, we performed expression analyses of several genes from the top novel region (chr2:134533564-136169524), from a previously identified locus that is now extended, and a gene marked by an isolated SNP, in duodenum biopsies of active and treated CD patients, and non-celiac controls. In the largest novel region, CCNT2 and R3HDM1 were constitutively underexpressed in disease, even after gluten removal. Moreover, several genes within this region were coexpressed in patients, but not in controls. Other novel genes like KIF21B, REL and SORD also showed altered expression in active disease. Apart from the identification of novel CD loci, these results suggest that ancestry-based stratified analysis is an efficient strategy for association studies in complex diseases.


Assuntos
Doença Celíaca/genética , Loci Gênicos , Linhagem , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Doença Celíaca/metabolismo , Duodeno/metabolismo , Glutens/metabolismo , Humanos
20.
Eur J Hum Genet ; 23(8): 1100-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25388004

RESUMO

Celiac disease is a chronic immune-mediated disorder with an important genetic component. To date, there are 57 independent association signals from 39 non-HLA loci, and a total of 66 candidate genes have been proposed. We aimed to scrutinize the functional implication of 45 of those genes by analyzing their expression in the disease tissue of celiac patients (at diagnosis/treatment) compared with non-celiac controls. Moreover, we investigated the SNP genotype effect in gene expression and performed coexpression analyses. Several genes showed differential expression among disease groups, most of them related to immune response. Multiple trans-eQTLs but only four cis-eQTLs were found, and surprisingly the genotype effect seems to be stimulus dependent as it differs among groups. Coexpression levels vary from higher to lower levels in active patients at diagnosis, treated patients and non-celiac controls respectively. A subset of 18 genes tightly correlated in both groups of patients but not in controls was identified. Interestingly, this subset of genes was influenced by the genotype of three SNPs. One of the SNPs, rs1018326 on chromosome two is on top of a known lincRNA whose function is not yet described, and whose expression seems to be upregulated in active disease when comparing biopsy pairs from the same individuals. Our results strongly suggest that the effects of disease-associated SNPs go far beyond the oversimplistic idea of transcriptional control at a nearby locus. Further investigations are needed to determine how each variant disrupts fine-tuning mechanisms in the genome that eventually lead to disease.


Assuntos
Doença Celíaca/genética , Predisposição Genética para Doença , Mucosa Intestinal/metabolismo , Locos de Características Quantitativas/genética , Doença Celíaca/metabolismo , Doença Celíaca/patologia , Feminino , Regulação da Expressão Gênica , Estudos de Associação Genética , Humanos , Mucosa Intestinal/patologia , Masculino , Polimorfismo de Nucleotídeo Único , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA