Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Chem Biol ; 19(9): 1054-1062, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37169961

RESUMO

Preventing the biogenesis of disease-relevant proteins is an attractive therapeutic strategy, but attempts to target essential protein biogenesis factors have been hampered by excessive toxicity. Here we describe KZR-8445, a cyclic depsipeptide that targets the Sec61 translocon and selectively disrupts secretory and membrane protein biogenesis in a signal peptide-dependent manner. KZR-8445 potently inhibits the secretion of pro-inflammatory cytokines in primary immune cells and is highly efficacious in a mouse model of rheumatoid arthritis. A cryogenic electron microscopy structure reveals that KZR-8445 occupies the fully opened Se61 lateral gate and blocks access to the lumenal plug domain. KZR-8445 binding stabilizes the lateral gate helices in a manner that traps select signal peptides in the Sec61 channel and prevents their movement into the lipid bilayer. Our results establish a framework for the structure-guided discovery of novel therapeutics that selectively modulate Sec61-mediated protein biogenesis.


Assuntos
Proteínas de Membrana , Sinais Direcionadores de Proteínas , Animais , Camundongos , Transporte Proteico , Proteínas de Membrana/metabolismo , Canais de Translocação SEC/química , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Biossíntese de Proteínas
2.
EMBO Rep ; 24(12): e57910, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37983950

RESUMO

Protein translocation across the endoplasmic reticulum (ER) membrane is an essential step during protein entry into the secretory pathway. The conserved Sec61 protein-conducting channel facilitates polypeptide translocation and coordinates cotranslational polypeptide-processing events. In cells, the majority of Sec61 is stably associated with a heterotetrameric membrane protein complex, the translocon-associated protein complex (TRAP), yet the mechanism by which TRAP assists in polypeptide translocation remains unknown. Here, we present the structure of the core Sec61/TRAP complex bound to a mammalian ribosome by cryogenic electron microscopy (cryo-EM). Ribosome interactions anchor the Sec61/TRAP complex in a conformation that renders the ER membrane locally thinner by significantly curving its lumenal leaflet. We propose that TRAP stabilizes the ribosome exit tunnel to assist nascent polypeptide insertion through Sec61 and provides a ratcheting mechanism into the ER lumen mediated by direct polypeptide interactions.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Animais , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/química , Retículo Endoplasmático/metabolismo , Mamíferos/metabolismo , Peptídeos/metabolismo , Transporte Proteico
3.
EMBO Rep ; 24(7): e56467, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37155564

RESUMO

The APOE4 variant of apolipoprotein E (apoE) is the most prevalent genetic risk allele associated with late-onset Alzheimer's disease (AD). ApoE interacts with complement regulator factor H (FH), but the role of this interaction in AD pathogenesis is unknown. Here we elucidate the mechanism by which isoform-specific binding of apoE to FH alters Aß1-42-mediated neurotoxicity and clearance. Flow cytometry and transcriptomic analysis reveal that apoE and FH reduce binding of Aß1-42 to complement receptor 3 (CR3) and subsequent phagocytosis by microglia which alters expression of genes involved in AD. Moreover, FH forms complement-resistant oligomers with apoE/Aß1-42 complexes and the formation of these complexes is isoform specific with apoE2 and apoE3 showing higher affinity to FH than apoE4. These FH/apoE complexes reduce Aß1-42 oligomerization and toxicity, and colocalize with complement activator C1q deposited on Aß plaques in the brain. These findings provide an important mechanistic insight into AD pathogenesis and explain how the strongest genetic risk factor for AD predisposes for neuroinflammation in the early stages of the disease pathology.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Humanos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Fator H do Complemento/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doenças Neuroinflamatórias , Apolipoproteínas E/química , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Peptídeos beta-Amiloides/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
Nat Methods ; 18(4): 382-388, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33782607

RESUMO

The coarse-grained Martini force field is widely used in biomolecular simulations. Here we present the refined model, Martini 3 ( http://cgmartini.nl ), with an improved interaction balance, new bead types and expanded ability to include specific interactions representing, for example, hydrogen bonding and electronic polarizability. The updated model allows more accurate predictions of molecular packing and interactions in general, which is exemplified with a vast and diverse set of applications, ranging from oil/water partitioning and miscibility data to complex molecular systems, involving protein-protein and protein-lipid interactions and material science applications as ionic liquids and aedamers.


Assuntos
Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Bicamadas Lipídicas , Termodinâmica
5.
Environ Sci Technol ; 58(3): 1495-1508, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38186267

RESUMO

Over the past decade, there has been a significant rise in the use of vaping devices, particularly among adolescents, raising concerns for effects on respiratory health. Pressingly, many recent vaping-related lung injuries are unexplained by current knowledge, and the overall implications of vaping for respiratory health are poorly understood. This study investigates the effect of hydrophobic vaping liquid chemicals on the pulmonary surfactant biophysical function. We focus on the commonly used flavoring benzaldehyde and its vaping byproduct, benzaldehyde propylene glycol acetal. The study involves rigorous testing of the surfactant biophysical function in Langmuir trough and constrained sessile drop surfactometer experiments with both protein-free synthetic surfactant and hydrophobic protein-containing clinical surfactant models. The study reveals that exposure to these vaping chemicals significantly interferes with the synthetic and clinical surfactant biophysical function. Further atomistic simulations reveal preferential interactions with SP-B and SP-C surfactant proteins. Additionally, data show surfactant lipid-vaping chemical interactions and suggest significant transfer of vaping chemicals to the experimental subphase, indicating a toxicological mechanism for the alveolar epithelium. Our study, therefore, reveals novel mechanisms for the inhalational toxicity of vaping. This highlights the need to reassess the safety of vaping liquids for respiratory health, particularly the use of aldehyde chemicals as vaping flavorings.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Surfactantes Pulmonares , Vaping , Adolescente , Humanos , Aldeídos , Benzaldeídos , Tensoativos , Aromatizantes
6.
Biophys J ; 122(11): 2203-2215, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36604961

RESUMO

The precise spatiotemporal control of nanoscale membrane shape and composition is the result of a complex interplay of individual and collective molecular behaviors. Here, we employed single-molecule localization microscopy and computational simulations to observe single-lipid diffusion and sorting in model membranes with varying compositions, phases, temperatures, and curvatures. Supported lipid bilayers were created over 50-nm-radius nanoparticles to mimic the size of naturally occurring membrane buds, such as endocytic pits and the formation of viral envelopes. The curved membranes recruited liquid-disordered lipid phases while altering the diffusion and sorting of tracer lipids. Disorder-preferring fluorescent lipids sorted to and experienced faster diffusion on the nanoscale curvature only when embedded in a membrane capable of sustaining lipid phase separation at low temperatures. The curvature-induced sorting and faster diffusion even occurred when the sample temperature was above the miscibility temperature of the planar membrane, implying that the nanoscale curvature could induce phase separation in otherwise homogeneous membranes. Further confirmation and understanding of these results are provided by continuum and coarse-grained molecular dynamics simulations with explicit and spontaneous curvature-phase coupling, respectively. The curvature-induced membrane compositional heterogeneity and altered dynamics were achieved only with a coupling of the curvature with a lipid phase separation. These cross-validating results demonstrate the complex interplay of lipid phases, molecular diffusion, and nanoscale membrane curvature that are critical for membrane functionality.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Temperatura , Difusão , Transporte Proteico , Membrana Celular
7.
Langmuir ; 39(12): 4338-4350, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36917773

RESUMO

The lining of the alveoli is covered by pulmonary surfactant, a complex mixture of surface-active lipids and proteins that enables efficient gas exchange between inhaled air and the circulation. Despite decades of advancements in the study of the pulmonary surfactant, the molecular scale behavior of the surfactant and the inherent role of the number of different lipids and proteins in surfactant behavior are not fully understood. The most important proteins in this complex system are the surfactant proteins SP-B and SP-C. Given this, in this work we performed nonequilibrium all-atom molecular dynamics simulations to study the interplay of SP-B and SP-C with multicomponent lipid monolayers mimicking the pulmonary surfactant in composition. The simulations were complemented by z-scan fluorescence correlation spectroscopy and atomic force microscopy measurements. Our state-of-the-art simulation model reproduces experimental pressure-area isotherms and lateral diffusion coefficients. In agreement with previous research, the inclusion of either SP-B and SP-C increases surface pressure, and our simulations provide a molecular scale explanation for this effect: The proteins display preferential lipid interactions with phosphatidylglycerol, they reside predominantly in the lipid acyl chain region, and they partition into the liquid expanded phase or even induce it in an otherwise packed monolayer. The latter effect is also visible in our atomic force microscopy images. The research done contributes to a better understanding of the roles of specific lipids and proteins in surfactant function, thus helping to develop better synthetic products for surfactant replacement therapy used in the treatment of many fatal lung-related injuries and diseases.


Assuntos
Surfactantes Pulmonares , Fenômenos Biofísicos , Fosfolipídeos/química , Proteínas , Proteína B Associada a Surfactante Pulmonar/química , Surfactantes Pulmonares/química , Propriedades de Superfície , Tensoativos , Proteína C Associada a Surfactante Pulmonar/química
8.
Proc Natl Acad Sci U S A ; 117(45): 27980-27988, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33093207

RESUMO

The Bcl-2 protein family comprises both pro- and antiapoptotic members that control the permeabilization of the mitochondrial outer membrane, a crucial step in the modulation of apoptosis. Recent research has demonstrated that the carboxyl-terminal transmembrane domain (TMD) of some Bcl-2 protein family members can modulate apoptosis; however, the transmembrane interactome of the antiapoptotic protein Mcl-1 remains largely unexplored. Here, we demonstrate that the Mcl-1 TMD forms homooligomers in the mitochondrial membrane, competes with full-length Mcl-1 protein with regards to its antiapoptotic function, and induces cell death in a Bok-dependent manner. While the Bok TMD oligomers locate preferentially to the endoplasmic reticulum (ER), heterooligomerization between the TMDs of Mcl-1 and Bok predominantly takes place at the mitochondrial membrane. Strikingly, the coexpression of Mcl-1 and Bok TMDs produces an increase in ER mitochondrial-associated membranes, suggesting an active role of Mcl-1 in the induced mitochondrial targeting of Bok. Finally, the introduction of Mcl-1 TMD somatic mutations detected in cancer patients alters the TMD interaction pattern to provide the Mcl-1 protein with enhanced antiapoptotic activity, thereby highlighting the clinical relevance of Mcl-1 TMD interactions.


Assuntos
Apoptose/fisiologia , Retículo Endoplasmático/metabolismo , Membranas Mitocondriais/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Morte Celular/fisiologia , Células HeLa , Humanos , Mitocôndrias/metabolismo , Domínios Proteicos
9.
Langmuir ; 38(37): 11284-11295, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36083171

RESUMO

Adsorption of arginine-rich positively charged peptides onto neutral zwitterionic phosphocholine (PC) bilayers is a key step in the translocation of those potent cell-penetrating peptides into the cell interior. In the past, we have shown both theoretically and experimentally that polyarginines adsorb to the neutral PC-supported lipid bilayers in contrast to polylysines. However, comparing our results with previous studies showed that the results often do not match even at the qualitative level. The adsorption of arginine-rich peptides onto 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) may qualitatively depend on the actual experimental conditions where binding experiments have been performed. In this work, we systematically studied the adsorption of R9 and K9 peptides onto the POPC bilayer, aided by molecular dynamics (MD) simulations and fluorescence cross-correlation spectroscopy (FCCS) experiments. Using MD simulations, we tested a series of increasing peptide concentrations, in parallel with increasing Na+ and Ca2+ salt concentrations, showing that the apparent strength of adsorption of R9 decreases upon the increase of peptide or salt concentration in the system. The key result from the simulations is that the salt concentrations used experimentally can alter the picture of peptide adsorption qualitatively. Using FCCS experiments with fluorescently labeled R9 and K9, we first demonstrated that the binding of R9 to POPC is tighter by almost 2 orders of magnitude compared to that of K9. Finally, upon the addition of an excess of either Na+ or Ca2+ ions with R9, the total fluorescence correlation signal is lost, which implies the unbinding of R9 from the PC bilayer, in agreement with our predictions from MD simulations.


Assuntos
Peptídeos Penetradores de Células , Bicamadas Lipídicas , Adsorção , Arginina , Peptídeos Penetradores de Células/química , Lecitinas , Bicamadas Lipídicas/química , Concentração Osmolar , Fosfatidilcolinas/química , Fosforilcolina
10.
J Am Chem Soc ; 143(34): 13701-13709, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34465095

RESUMO

Interest in lipid interactions with proteins and other biomolecules is emerging not only in fundamental biochemistry but also in the field of nanobiotechnology where lipids are commonly used, for example, in carriers of mRNA vaccines. The outward-facing components of cellular membranes and lipid nanoparticles, the lipid headgroups, regulate membrane interactions with approaching substances, such as proteins, drugs, RNA, or viruses. Because lipid headgroup conformational ensembles have not been experimentally determined in physiologically relevant conditions, an essential question about their interactions with other biomolecules remains unanswered: Do headgroups exchange between a few rigid structures, or fluctuate freely across a practically continuous spectrum of conformations? Here, we combine solid-state NMR experiments and molecular dynamics simulations from the NMRlipids Project to resolve the conformational ensembles of headgroups of four key lipid types in various biologically relevant conditions. We find that lipid headgroups sample a wide range of overlapping conformations in both neutral and charged cellular membranes, and that differences in the headgroup chemistry manifest only in probability distributions of conformations. Furthermore, the analysis of 894 protein-bound lipid structures from the Protein Data Bank suggests that lipids can bind to proteins in a wide range of conformations, which are not limited by the headgroup chemistry. We propose that lipids can select a suitable headgroup conformation from the wide range available to them to fit the various binding sites in proteins. The proposed inverse conformational selection model will extend also to lipid binding to targets other than proteins, such as drugs, RNA, and viruses.


Assuntos
Lipídeos/química , Proteínas/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Ligação Proteica , Proteínas/metabolismo
11.
Chem Rev ; 119(9): 5607-5774, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30859819

RESUMO

Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.


Assuntos
Membranas/química , Membranas/fisiologia , Modelos Biológicos , Animais , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Simulação por Computador , Humanos , Lipidômica/métodos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Membranas/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo
12.
J Chem Phys ; 155(1): 015102, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241397

RESUMO

Single-particle tracking (SPT) experiments of lipids and membrane proteins provide a wealth of information about the properties of biomembranes. Careful analysis of SPT trajectories can reveal deviations from ideal Brownian behavior. Among others, this includes confinement effects and anomalous diffusion, which are manifestations of both the nanoscale structure of the underlying membrane and the structure of the diffuser. With the rapid increase in temporal and spatial resolution of experimental methods, a new aspect of the motion of the particle, namely, anisotropic diffusion, might become relevant. This aspect that so far received only little attention is the anisotropy of the diffusive motion and may soon provide an additional proxy to the structure and topology of biomembranes. Unfortunately, the theoretical framework for detecting and interpreting anisotropy effects is currently scattered and incomplete. Here, we provide a computational method to evaluate the degree of anisotropy directly from molecular dynamics simulations and also point out a way to compare the obtained results with those available from SPT experiments. In order to probe the effects of anisotropic diffusion, we performed coarse-grained molecular dynamics simulations of peripheral and integral membrane proteins in flat and curved bilayers. In agreement with the theoretical basis, our computational results indicate that anisotropy can persist up to the rotational relaxation time [τ=(2Dr)-1], after which isotropic diffusion is observed. Moreover, the underlying topology of the membrane bilayer can couple with the geometry of the particle, thus extending the spatiotemporal domain over which this type of motion can be detected.


Assuntos
Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Anisotropia , Difusão
13.
Proc Natl Acad Sci U S A ; 115(47): 11923-11928, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30397112

RESUMO

Arginine-rich cell-penetrating peptides do not enter cells by directly passing through a lipid membrane; they instead passively enter vesicles and live cells by inducing membrane multilamellarity and fusion. The molecular picture of this penetration mode, which differs qualitatively from the previously proposed direct mechanism, is provided by molecular dynamics simulations. The kinetics of vesicle agglomeration and fusion by an iconic cell-penetrating peptide-nonaarginine-are documented via real-time fluorescence techniques, while the induction of multilamellar phases in vesicles and live cells is demonstrated by a combination of electron and fluorescence microscopies. This concert of experiments and simulations reveals that the identified passive cell penetration mechanism bears analogy to vesicle fusion induced by calcium ions, indicating that the two processes may share a common mechanistic origin.


Assuntos
Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Fusão de Membrana/fisiologia , Arginina/metabolismo , Arginina/fisiologia , Transporte Biológico , Membrana Celular/metabolismo , Cinética , Bicamadas Lipídicas/química , Fusão de Membrana/efeitos dos fármacos , Membranas/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/fisiologia , Pseudópodes/metabolismo , Pseudópodes/fisiologia
14.
Langmuir ; 36(50): 15258-15269, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33296215

RESUMO

Ions at the two sides of the plasma membrane maintain the transmembrane potential, participate in signaling, and affect the properties of the membrane itself. The extracellular leaflet is particularly enriched in phosphatidylcholine lipids and under the influence of Na+, Ca2+, and Cl- ions. In this work, we combined molecular dynamics simulations performed using state-of-the-art models with vibrational sum frequency generation (VSFG) spectroscopy to study the effects of these key ions on the structure of dipalmitoylphosphatidylcholine. We used lipid monolayers as a proxy for membranes, as this approach enabled a direct comparison between simulation and experiment. We find that the effects of Na+ are minor. Ca2+, on the other hand, strongly affects the lipid headgroup conformations and induces a tighter packing of lipids, thus promoting the liquid condensed phase. It does so by binding to both the phosphate and carbonyl oxygens via direct and water-mediated binding modes, the ratios of which depend on the monolayer packing. Clustering analysis performed on simulation data revealed that changes in area per lipid or CaCl2 concentration both affect the headgroup conformations, yet their effects are anticorrelated. Cations at the monolayer surface also attract Cl-, which at large CaCl2 concentrations penetrates deep to the monolayer. This phenomenon coincides with a radical change in the VSFG spectra of the phosphate group, thus indicating the emergence of a new binding mode.

15.
PLoS Comput Biol ; 15(5): e1007033, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31107861

RESUMO

G protein-coupled receptors (GPCRs) control cellular signaling and responses. Many of these GPCRs are modulated by cholesterol and polyunsaturated fatty acids (PUFAs) which have been shown to co-exist with saturated lipids in ordered membrane domains. However, the lipid compositions of such domains extracted from the brain cortex tissue of individuals suffering from GPCR-associated neurological disorders show drastically lowered levels of PUFAs. Here, using free energy techniques and multiscale simulations of numerous membrane proteins, we show that the presence of the PUFA DHA helps helical multi-pass proteins such as GPCRs partition into ordered membrane domains. The mechanism is based on hybrid lipids, whose PUFA chains coat the rough protein surface, while the saturated chains face the raft environment, thus minimizing perturbations therein. Our findings suggest that the reduction of GPCR partitioning to their native ordered environments due to PUFA depletion might affect the function of these receptors in numerous neurodegenerative diseases, where the membrane PUFA levels in the brain are decreased. We hope that this work inspires experimental studies on the connection between membrane PUFA levels and GPCR signaling.


Assuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriais/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Biologia Computacional , Simulação por Computador , Ácidos Docosa-Hexaenoicos/química , Ácidos Graxos Insaturados/metabolismo , Humanos , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Modelos Neurológicos , Conformação Proteica , Receptor A2A de Adenosina/química , Receptor A2A de Adenosina/metabolismo , Receptores Acoplados a Proteínas G/química , Células Receptoras Sensoriais/química , Transdução de Sinais , Termodinâmica
16.
Phys Chem Chem Phys ; 21(22): 11660-11669, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31119241

RESUMO

Cholesterol regulates the function of membrane proteins either via direct or membrane-mediated effects. Therefore, its ready availability is crucial for many protein-governed cellular processes. Recent studies suggest that cholesterol can partition to the core of polyunsaturated membranes, where cholesterol binding sites of many membrane proteins are also located. This core region is characterized by a lower viscosity. Therefore, we hypothesized that cholesterol partitioning into the membrane interior increases the rate of its diffusion in polyunsaturated membrane environments. We studied the behavior of cholesterol in membranes with increasing level of lipid chain unsaturation using a combination of atomistic and coarse-grained molecular dynamics simulations. Our simulations suggest a strong correlation between entropy-driven enhanced cholesterol partitioning to the membrane core and its faster lateral diffusion, which indicates that the less viscous membrane core indeed provides an efficient means for cholesterol movement in polyunsaturated membrane environments.

17.
J Biol Chem ; 292(35): 14438-14455, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28718450

RESUMO

Phosphatidylinositol-transfer proteins (PITPs) regulate phosphoinositide signaling in eukaryotic cells. The defining feature of PITPs is their ability to exchange phosphatidylinositol (PtdIns) molecules between membranes, and this property is central to PITP-mediated regulation of lipid signaling. However, the details of the PITP-mediated lipid exchange cycle remain entirely obscure. Here, all-atom molecular dynamics simulations of the mammalian StART-like PtdIns/phosphatidylcholine (PtdCho) transfer protein PITPα, both on membrane bilayers and in solvated systems, informed downstream biochemical analyses that tested key aspects of the hypotheses generated by the molecular dynamics simulations. These studies provided five key insights into the PITPα lipid exchange cycle: (i) interaction of PITPα with the membrane is spontaneous and mediated by four specific protein substructures; (ii) the ability of PITPα to initiate closure around the PtdCho ligand is accompanied by loss of flexibility of two helix/loop regions, as well as of the C-terminal helix; (iii) the energy barrier of phospholipid extraction from the membrane is lowered by a network of hydrogen bonds between the lipid molecule and PITPα; (iv) the trajectory of PtdIns or PtdCho into and through the lipid-binding pocket is chaperoned by sets of PITPα residues conserved throughout the StART-like PITP family; and (v) conformational transitions in the C-terminal helix have specific functional involvements in PtdIns transfer activity. Taken together, these findings provide the first mechanistic description of key aspects of the PITPα PtdIns/PtdCho exchange cycle and offer a rationale for the high conservation of particular sets of residues across evolutionarily distant members of the metazoan StART-like PITP family.


Assuntos
Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Fosfatidilcolinas/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Transporte Biológico , Biologia Computacional , Sequência Conservada , Transferência de Energia , Ligação de Hidrogênio , Ligantes , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Fosfatidilcolinas/química , Fosfatidilinositóis/química , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/genética , Polimorfismo de Nucleotídeo Único , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
18.
Langmuir ; 34(7): 2565-2572, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28945973

RESUMO

Lung surfactant and a tear film lipid layer are examples of biologically relevant macromolecular structures found at the air-water interface. Because of their complexity, they are often studied in terms of simplified lipid layers, the simplest example being a Langmuir monolayer. Given the profound biological significance of these lipid assemblies, there is a need to understand their structure and dynamics on the nanoscale, yet there are not many techniques able to provide this information. Atomistic molecular dynamics simulations would be a tool fit for this purpose; however, the simulation models suggested until now have been qualitative instead of quantitative. This limitation has mainly stemmed from the challenge to correctly describe the surface tension of water with simulation parameters compatible with other biomolecules. In this work, we show that this limitation can be overcome by using the recently introduced four-point OPC water model, whose surface tension for water is demonstrated to be quantitatively consistent with experimental data and which is also shown to be compatible with the commonly employed lipid models. We further establish that the approach of combining the OPC four-point water model with the CHARMM36 lipid force field provides nearly quantitative agreement with experiments for the surface pressure-area isotherm for POPC and DPPC monolayers, also including the experimentally observed phase coexistence in a DPPC monolayer. The simulation models reported in this work pave the way for nearly quantitative atomistic studies of lipid-rich biological structures at air-water interfaces.

19.
Biochim Biophys Acta ; 1858(10): 2468-2482, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26947184

RESUMO

Molecular dynamics (MD) simulations have become a highly important technique to consider lipid membrane systems, and quite often they provide considerable added value to laboratory experiments. Rapid development of both software and hardware has enabled the increase of time and size scales reachable by MD simulations to match those attainable by several accurate experimental techniques. However, until recently, the quality and maturity of software tools available for building membrane models for simulations as well as analyzing the results of these simulations have seriously lagged behind. Here, we discuss the recent developments of such tools from the end-users' point of view. In particular, we review the software that can be employed to build lipid bilayers and other related structures with or without embedded membrane proteins to be employed in MD simulations. Additionally, we provide a brief critical insight into force fields and MD packages commonly used for membrane and membrane protein simulations. Finally, we list analysis tools that can be used to study the properties of membrane and membrane protein systems. In all these points we comment on the respective compatibility of the covered tools. We also share our opinion on the current state of the available software. We briefly discuss the most commonly employed tools and platforms on which new software can be built. We conclude the review by providing a few ideas and guidelines on how the development of tools can be further boosted to catch up with the rapid pace at which the field of membrane simulation progresses. This includes improving the compatibility between software tools and promoting the openness of the codes on which these applications rely. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.


Assuntos
Bicamadas Lipídicas/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Bases de Dados como Assunto , Lipossomos , Micelas , Software
20.
Biochim Biophys Acta Biomembr ; 1859(5): 870-878, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28143757

RESUMO

Extracellular and cytosolic leaflets in cellular membranes are distinctly different in lipid composition, yet they contribute together to signaling across the membranes. Here we consider a mechanism based on long-chain gangliosides for coupling the extracellular and cytosolic membrane leaflets together. Based on atomistic molecular dynamics simulations, we find that long-chain GM1 in the extracellular leaflet exhibits a strong tendency to protrude into the opposing bilayer leaflet. This interdigitation modulates the order in the cytosolic monolayer and thereby strengthens the interaction and coupling across a membrane. Coarse-grained simulations probing longer time scales in large membrane systems indicate that GM1 in the extracellular leaflet modulates the phase behavior in the cytosolic monolayer. While short-chain GM1 maintains phase-symmetric bilayers with a strong membrane registration effect, the situation is altered with long-chain GM1. Here, the significant interdigitation induced by long-chain GM1 modulates the behavior in the cytosolic GM1-free leaflet, weakening and slowing down the membrane registration process. The observed physical interaction mechanism provides a possible means to mediate or foster transmembrane communication associated with signal transduction.


Assuntos
Gangliosídeo G(M1)/química , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA