Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074915

RESUMO

An important characteristic of cell differentiation is its stability. Only rarely do cells or their stem cell progenitors change their differentiation pathway. If they do, it is often accompanied by a malfunction such as cancer. A mechanistic understanding of the stability of differentiated states would allow better prospects of alleviating the malfunctioning. However, such complete information is yet elusive. Earlier experiments performed in Xenopus oocytes to address this question suggest that a cell may maintain its gene expression by prolonged binding of cell type-specific transcription factors. Here, using DNA competition experiments, we show that the stability of gene expression in a nondividing cell could be caused by the local entrapment of part of the general transcription machinery in transcriptionally active regions. Strikingly, we found that transcriptionally active and silent forms of the same DNA template can stably coexist within the same nucleus. Both DNA templates are associated with the gene-specific transcription factor Ascl1, the core factor TBP2, and the polymerase II (Pol-II) ser5 C-terminal domain (CTD) phosphorylated form, while Pol-II ser2 CTD phosphorylation is restricted to the transcriptionally dominant template. We discover that the active and silent DNA forms are physically separated in the oocyte nucleus through partition into liquid-liquid phase-separated condensates. Altogether, our study proposes a mechanism of transcriptional regulation involving a spatial entrapment of general transcription machinery components to stabilize the active form of a gene in a nondividing cell.


Assuntos
DNA/genética , Regulação da Expressão Gênica , Oócitos/metabolismo , Transcrição Gênica , Animais , Diferenciação Celular , DNA/metabolismo , Humanos , Oócitos/citologia , Fosforilação , RNA Polimerase II/metabolismo , Moldes Genéticos , Xenopus
2.
Dev Biol ; 483: 34-38, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34942195

RESUMO

Proper function of the body is maintained by an intricate interaction and communication among cells. during the animal development how these cells are formed and maintained is an important yet elusive. Understanding of how cells such as muscle and nerve cells maintain their identities would enable us to control the diseases which include malfunctioning in cellular identities such as cancer. In this article, we describe how the concept of formation and maintenance of cell identities has changed over the last 100 years. We will also briefly describe our current experimental work which includes transcriptional dynamics, and protein-protein interaction and how they are bringing new molecular insights. We also describe liquid-liquid phase separation as a potential new mechanism for the stability of gene expression in the non dvididng specialised cells of Xenopus oocytes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Oócitos/citologia , Oócitos/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/genética , Animais , Divisão Celular Assimétrica/genética , Diferenciação Celular/genética , Feminino , Células Musculares/metabolismo , Neurônios/metabolismo , Ovoviviparidade/genética , Mapas de Interação de Proteínas/genética , Transcrição Gênica/genética , Xenopus laevis/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(26): 15075-15084, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32532919

RESUMO

Some lineage-determining transcription factors are overwhelmingly important in directing embryonic cells to a particular differentiation pathway, such as Ascl1 for nerve. They also have an exceptionally strong ability to force cells to change from an unrelated pathway to one preferred by their action. Transcription factors are believed to have a very short residence time of only a few seconds on their specific DNA or chromatin-binding sites. We have developed a procedure in which DNA containing one copy of the binding site for the neural-inducing factor Ascl1 is injected directly into a Xenopus oocyte nucleus which has been preloaded with a limiting amount of the Ascl1 transcription factor protein. This is followed by a further injection of DNA as a competitor, either in a plasmid or in chromosomal DNA, containing the same binding site but with a different reporter. Importantly, expression of the reporter provides a measure of the function of the transcription factor in addition to its residence time. The same long residence time and resistance to competition are seen with the estrogen receptor and its DNA response elements. We find that in this nondividing oocyte, the nerve-inducing factor Ascl1 can remain bound to a specific chromatin site for hours or days and thereby help to stabilize gene expression. This stability of transcription factor binding to chromatin is a necessary part of its action because removal of this factor causes discontinuation of its effect on gene expression. Stable transcription factor binding may be a characteristic of nondividing cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cromatina/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Cromatina/genética , DNA/genética , DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Ligação Proteica , Xenopus laevis/embriologia , Xenopus laevis/genética , Xenopus laevis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA