RESUMO
In this review, we have amalgamated the literature, taking a multimodal neuroimaging approach to quantify the relationship between neuronal firing and haemodynamics during a task paradigm (i.e., neurovascular coupling response), while considering confounding physiological influences. Original research articles that used concurrent neuronal and haemodynamic quantification in humans (n ≥ 10) during a task paradigm were included from PubMed, Scopus, Web of Science, EMBASE and PsychINFO. Articles published before 31 July 2023 were considered for eligibility. Rapid screening was completed by the first author. Two authors completed the title/abstract and full-text screening. Article quality was assessed using a modified version of the National Institutes of Health Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. A total of 364 articles were included following title/abstract and full-text screening. The most common combination was EEG/functional MRI (68.7%), with cognitive (48.1%) and visual (27.5%) tasks being the most common. The majority of studies displayed an absence/minimal control of blood pressure, arterial gas concentrations and/or heart rate (92.9%), and only 1.3% monitored these factors. A minority of studies restricted or collected data pertaining to caffeine (7.4%), exercise (0.8%), food (0.5%), nicotine (2.7%), the menstrual cycle (0.3%) or cardiorespiratory fitness levels (0.5%). The cerebrovasculature is sensitive to numerous factors; thus, to understand the neurovascular coupling response fully, better control for confounding physiological influences of blood pressure and respiratory metrics is imperative during study-design formulation. Moreover, further work should continue to examine sex-based differences, the influence of sex steroid hormone concentrations and cardiorespiratory fitness.
RESUMO
Frequency-domain near-infrared spectroscopy (FD-NIRS) has been used for non-invasive assessment of cortical oxygenation since the late 1990s. However, there is limited research demonstrating clinical validity and general reproducibility. To address this limitation, recording duration for adequate validity and within- and between-day reproducibility of prefrontal cortical oxygenation was evaluated. To assess validity, a reverse analysis of 10-min-long measurements (n = 52) at different recording durations (1-10-min) was quantified via coefficients of variation and Bland-Altman plots. To assess within- and between-day within-subject reproducibility, participants (n = 15) completed 2-min measurements twice a day (morning/afternoon) for five consecutive days. While 1-min recordings demonstrated sufficient validity for the assessment of oxygen saturation (StO2) and total hemoglobin concentration (THb), recordings ≥4 min revealed greater clinical utility for oxy- (HbO) and deoxyhemoglobin (HHb) concentration. Females had lower StO2, THb, HbO, and HHb values than males, but variability was approximately equal between sexes. Intraclass correlation coefficients ranged from 0.50-0.96. The minimal detectable change for StO2 was 1.15% (95% CI: 0.336-1.96%) and 3.12 µM for THb (95% CI: 0.915-5.33 µM) for females and 2.75% (95%CI: 0.807-4.70%) for StO2 and 5.51 µM (95%CI: 1.62-9.42 µM) for THb in males. Overall, FD-NIRS demonstrated good levels of between-day reliability. These findings support the application of FD-NIRS in field-based settings and indicate a recording duration of 1 min allows for valid measures; however, data recordings of ≥4 min are recommended when feasible.