Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 35(22): e2300151, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36869278

RESUMO

A photoresist-based on a light-stabilized dynamic material driven by an out-of-equilibrium photo-Diels-Alder reaction of triazolinediones with naphthalenes-whose ability to intrinsically degrade postprinting can be tuned by a simple adjustment of laser intensity during 3D laser lithography is introduced. The resist's ability to form stable networks under green light irradiation that degrade in the dark is transformed into a tunable degradable 3D printing material platform. In-depth characterization of the printed microstructures via atomic force microscopy before and during degradation reveals the high dependency of the final structures' properties on the writing parameters. Upon identifying the ideal writing parameters and their effect on the network structure, it is possible to selectively toggle between stable and fully degradable structures. This simplifies the direct laser writing manufacturing process of multifunctional materials significantly, which typically requires the use of separate resists and consecutive writing efforts to achieve degradable and nondegradable material sections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA