Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 32(13): 3605-3623, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37000122

RESUMO

Early lineage diversification is central to understand what mutational events drive species divergence. Particularly, gene misregulation in interspecific hybrids can inform about what genes and pathways underlie hybrid dysfunction. In Drosophila hybrids, how regulatory evolution impacts different reproductive tissues remains understudied. Here, we generate a new genome assembly and annotation in Drosophila willistoni and analyse the patterns of transcriptome divergence between two allopatrically evolved D. willistoni subspecies, their male sterile and female fertile hybrid progeny across testis, male accessory gland, and ovary. Patterns of transcriptome divergence and modes of regulatory evolution were tissue-specific. Despite no indication for cell-type differences in hybrid testis, this tissue exhibited the largest magnitude of expression differentiation between subspecies and between parentals and hybrids. No evidence for anomalous dosage compensation in hybrid male tissues was detected nor was a differential role for the neo- and the ancestral arms of the D. willistoni X chromosome. Compared to the autosomes, the X chromosome appeared enriched for transgressively expressed genes in testis despite being the least differentiated in expression between subspecies. Evidence for fine genome clustering of transgressively expressed genes suggests a role of chromatin structure on hybrid gene misregulation. Lastly, transgressively expressed genes in the testis of the sterile male progeny were enriched for GO terms not typically associated with sperm function, instead hinting at anomalous development of the reproductive tissue. Our thorough tissue-level portrait of transcriptome differentiation between recently diverged D. willistoni subspecies and their hybrids provides a more nuanced view of early regulatory changes during speciation.


Assuntos
Drosophila , Sêmen , Animais , Masculino , Feminino , Drosophila/genética , Cromossomo X , Diferenciação Celular , Transcriptoma/genética , Hibridização Genética
2.
Mol Biol Evol ; 34(1): 51-65, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27702774

RESUMO

Gene clusters of recently duplicated genes are hotbeds for evolutionary change. However, our understanding of how mutational mechanisms and evolutionary forces shape the structural and functional evolution of these clusters is hindered by the high sequence identity among the copies, which typically results in their inaccurate representation in genome assemblies. The presumed testis-specific, chimeric gene Sdic originated, and tandemly expanded in Drosophila melanogaster, contributing to increased male-male competition. Using various types of massively parallel sequencing data, we studied the organization, sequence evolution, and functional attributes of the different Sdic copies. By leveraging long-read sequencing data, we uncovered both copy number and order differences from the currently accepted annotation for the Sdic region. Despite evidence for pervasive gene conversion affecting the Sdic copies, we also detected signatures of two episodes of diversifying selection, which have contributed to the evolution of a variety of C-termini and miRNA binding site compositions. Expression analyses involving RNA-seq datasets from 59 different biological conditions revealed distinctive expression breadths among the copies, with three copies being transcribed in females, opening the possibility to a sexually antagonistic effect. Phenotypic assays using Sdic knock-out strains indicated that should this antagonistic effect exist, it does not compromise female fertility. Our results strongly suggest that the genome consolidation of the Sdic gene cluster is more the result of a quick exploration of different paths of molecular tinkering by different copies than a mere dosage increase, which could be a recurrent evolutionary outcome in the presence of persistent sexual selection.


Assuntos
Drosophila melanogaster/genética , Sequências de Repetição em Tandem , Sequência de Aminoácidos , Animais , Dineínas do Axonema/genética , Evolução Biológica , Proteínas de Drosophila/genética , Evolução Molecular , Feminino , Conversão Gênica , Duplicação Gênica , Genes de Insetos , Variação Genética , Masculino , Família Multigênica , Filogenia , Análise de Sequência de DNA/métodos , Especificidade da Espécie
3.
Mol Biol Evol ; 31(10): 2557-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24951729

RESUMO

MicroRNAs (miRNAs) are endogenous RNA molecules that regulate gene expression posttranscriptionally. To date, the emergence of miRNAs and their patterns of sequence evolution have been analyzed in great detail. However, the extent to which miRNA expression levels have evolved over time, the role different evolutionary forces play in shaping these changes, and whether this variation in miRNA expression can reveal the interplay between miRNAs and mRNAs remain poorly understood. This is especially true for miRNA expressed during key developmental transitions. Here, we assayed miRNA expression levels immediately before (≥18BPF [18 h before puparium formation]) and after (PF) the increase in the hormone ecdysone responsible for triggering metamorphosis. We did so in four strains of Drosophila melanogaster and two closely related species. In contrast to their sequence conservation, approximately 25% of miRNAs analyzed showed significant within-species variation in male expression levels at ≥18BPF and/or PF. Additionally, approximately 33% showed modifications in their pattern of expression bias between developmental timepoints. A separate analysis of the ≥18BPF and PF stages revealed that changes in miRNA abundance accumulate linearly over evolutionary time at PF but not at ≥18BPF. Importantly, ≥18BPF-enriched miRNAs showed the greatest variation in expression levels both within and between species, so are the less likely to evolve under stabilizing selection. Functional attributes, such as expression ubiquity, appeared more tightly associated with lower levels of miRNA expression polymorphism at PF than at ≥18BPF. Furthermore, ≥18BPF- and PF-enriched miRNAs showed opposite patterns of covariation in expression with mRNAs, which denoted the type of regulatory relationship between miRNAs and mRNAs. Collectively, our results show contrasting patterns of functional divergence associated with miRNA expression levels during Drosophila ontogeny.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Metamorfose Biológica , MicroRNAs/genética , Animais , Sequência Conservada , Drosophila melanogaster/classificação , Drosophila melanogaster/genética , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Masculino , Dados de Sequência Molecular , Filogenia , Caracteres Sexuais
4.
Nat Commun ; 6: 6509, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25739651

RESUMO

Genome clustering of homeobox genes is often thought to reflect arrangements of tandem gene duplicates maintained by advantageous coordinated gene regulation. Here we analyse the chromosomal organization of the NK homeobox genes, presumed to be part of a single cluster in the Bilaterian ancestor, across 20 arthropods. We find that the ProtoNK cluster was extensively fragmented in some lineages, showing that NK clustering in Drosophila species does not reflect selectively maintained gene arrangements. More importantly, the arrangement of NK and neighbouring genes across the phylogeny supports that, in two instances within the Drosophila genus, some cluster remnants became reunited via large-scale chromosomal rearrangements. Simulated scenarios of chromosome evolution indicate that these reunion events are unlikely unless the genome neighbourhoods harbouring the participating genes tend to colocalize in the nucleus. Our results underscore how mechanisms other than tandem gene duplication can result in paralogous gene clustering during genome evolution.


Assuntos
Drosophila/genética , Evolução Molecular , Regulação da Expressão Gênica/genética , Genes Homeobox/genética , Família Multigênica/genética , Translocação Genética/fisiologia , Sequência de Aminoácidos , Animais , Artrópodes/genética , Mapeamento Cromossômico , Biologia Computacional , Duplicação Gênica/genética , Hibridização In Situ , Funções Verossimilhança , Modelos Genéticos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Filogenia , Especificidade da Espécie , Translocação Genética/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA