Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Electrophoresis ; 43(1-2): 212-231, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453855

RESUMO

Dielectrophoresis is a well-understood phenomenon that has been widely utilized in biomedical applications. Recent advancements in miniaturization have contributed to the development of dielectrophoretic-based devices for a wide variety of biomedical applications. In particular, the integration of dielectrophoresis with microfluidics, fluorescence, and electrical impedance has produced devices and techniques that are attractive for screening and diagnosing diseases. This review article summarizes the recent utility of dielectrophoresis in assays of biomarker detection. Common screening and diagnostic biomarkers, such as cellular, protein, and nucleic acid, are discussed. Finally, the potential use of recent developments in machine learning approaches toward improving biomarker detection performance is discussed. This review article will be useful for researchers interested in the recent utility of dielectrophoresis in the detection of biomarkers and for those developing new devices to address current gaps in dielectrophoretic biomarker detection.


Assuntos
Microfluídica , Ácidos Nucleicos , Biomarcadores/análise , Impedância Elétrica , Eletroforese , Proteínas
2.
Sensors (Basel) ; 22(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36146115

RESUMO

Weight loss through dietary and exercise intervention is commonly prescribed but is not effective for all individuals. Recent studies have demonstrated that circulating microRNA (miR) biomarkers could potentially be used to identify individuals who will likely lose weight through diet and exercise and attain a healthy body weight. However, accurate detection of miRs in clinical samples is difficult, error-prone, and expensive. To address this issue, we recently developed iLluminate-a low-cost and highly sensitive miR sensor suitable for point-of-care testing. To investigate if miR testing and iLluminate can be used in real-world obesity applications, we developed a pilot diet and exercise intervention and utilized iLluminate to evaluate miR biomarkers. We evaluated the expression of miRs-140, -935, -let-7b, and -99a, which are biomarkers for fat loss, energy metabolism, and adipogenic differentiation. Responders lost more total mass, tissue mass, and fat mass than non-responders. miRs-140, -935, -let-7b, and -99a, collectively accounted for 6.9% and 8.8% of the explained variability in fat and lean mass, respectively. At the level of the individual coefficients, miRs-140 and -935 were significantly associated with fat loss. Collectively, miRs-140 and -935 provide an additional degree of predictive capability in body mass and fat mass alternations.


Assuntos
MicroRNA Circulante , MicroRNAs , Biomarcadores , Dieta , Terapia por Exercício , Humanos , MicroRNAs/genética , Sobrepeso/terapia , Redução de Peso
3.
Electrophoresis ; 42(9-10): 1060-1069, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33506957

RESUMO

The detection and quantification of nucleic acid and proteomic biomarkers in bodily fluids is a critical part of many medical screening and diagnoses. However, majority of the current detection platforms are not ideal for routine, rapid, and low-cost testing in point-of-care settings. To address this issue, we developed a concept for a disposable universal point-of-care biosensor that can detect and quantify nucleic acid and proteomic biomarkers in diluted serum samples. The central tenet of sensing is the use of dielectrophoresis, electrothermal effects, and thermophoresis to selectively and rapidly isolate the biomarkers of interest in electrodes and then quantify using electrical impedance. When the sensor was applied to quantify microRNA and antigen biomarker molecules directly in diluted serum samples, it produced a LOD values in the fM range and sensitivity values from 1012 to 1015 Ω/M with a 30 min assay time and assay cost of less than $50 per assay.


Assuntos
Técnicas Biossensoriais , Biomarcadores , Eletrodos , Limite de Detecção , Ácidos Nucleicos , Proteômica
4.
Lab Chip ; 21(19): 3748-3761, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34585697

RESUMO

There is a growing interest for viral vector-free chimeric antigen receptor (CAR) T-cells due to its ability to kill cancer cells without adverse side effects. A potential avenue for manufacturing viral-vector free CAR T-cells is to utilize mRNA electroporation. One of the major concerns with mRNA electroporated CAR T-cells is the shorter cytotoxic lifespan of a few days, which is insufficient or not ideal for therapy. To better understand this issue and develop a potential solution, this study focused on examining the translation of electroporated mRNA to CAR molecules, time dependent degradation of CAR molecules and cytotoxicity produced by CAR T-cells on cancer cells. It was found that the initial expression of CAR molecules dictates the cytotoxicity. Initial CAR expression could be controlled by the experimental parameters such as electroporation time and mRNA concentration in the electroporation buffer. Experiments were carried out using a novel two-step electroporation that allows for controlled and uniform transfection of T-cells. These technical advancements and subsequent findings could provide a viable path for producing CAR T-cells with longer cytotoxic lifespans.


Assuntos
Eletroporação , Neoplasias , Humanos , Imunoterapia Adotiva , Neoplasias/terapia , RNA Mensageiro/genética , Linfócitos T , Transfecção
5.
ACS Appl Nano Mater ; 3(1): 797-805, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-32587952

RESUMO

Insulator-based dielectrophoretic (iDEP) trapping, separating, and concentrating nanoscale objects is carried out using a non-metal, unbiased, mobile tip acing as a tweezers. The spatial control and manipulation of fluorescently-labeled polystyrene particles and DNA were performed to demonstrate the feasibility of the iDEP tweezers. Frequency-dependent iDEP tweezers' strength and polarity were quantitatively determined using two theoretical approaches to DNA, which resulted in a factor of 2 ~ 40 differences between them. In either approach, the strength of iDEP was at least 4-order of magnitude stronger than the thermal force, indicating iDEP was a dominant force for trapping, holding, and separating DNA. The trapping strength and volume of the iDEP tweezers were also determined, which further supports direct capture and manipulation of DNA at the tip end.

6.
Appl Phys Lett ; 110(20): 203701, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28611486

RESUMO

Nanoelectronic devices integrated with dielectrophoresis (DEP) have been promoted as promising platforms for trapping, separating, and concentrating target biomarkers and cancer cells from a complex medium. Here, we visualized DEP and DEP gradients in conventional nanoelectronic devices by using multi-pass atomic force microcopy techniques. Our measurements directly demonstrated a short range DEP only at sharp step edges of electrodes, frequency dependent DEP polarity, and separation distance dependent DEP strength. Additionally, non-uniform DEP along the edges of the electrodes due to a large variation in electric field strength was observed. The strength and apparent working distance of DEP were measured to be an order of a few nN and 80 nm within the limited scale of particles and other parameters such as an ionic strength of the medium. This method provides a powerful tool to quantify the strength and polarity of DEP and allows optimizing and calibrating the device's operating parameters including the driving field strength for the effective control and manipulation of target biomolecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA