Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Ann Neurol ; 90(3): 490-505, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288055

RESUMO

OBJECTIVE: We utilized human midbrain-like organoids (hMLOs) generated from human pluripotent stem cells carrying glucocerebrosidase gene (GBA1) and α-synuclein (α-syn; SNCA) perturbations to investigate genotype-to-phenotype relationships in Parkinson disease, with the particular aim of recapitulating α-syn- and Lewy body-related pathologies and the process of neurodegeneration in the hMLO model. METHODS: We generated and characterized hMLOs from GBA1-/- and SNCA overexpressing isogenic embryonic stem cells and also generated Lewy body-like inclusions in GBA1/SNCA dual perturbation hMLOs and conduritol-b-epoxide-treated SNCA triplication hMLOs. RESULTS: We identified for the first time that the loss of glucocerebrosidase, coupled with wild-type α-syn overexpression, results in a substantial accumulation of detergent-resistant, ß-sheet-rich α-syn aggregates and Lewy body-like inclusions in hMLOs. These Lewy body-like inclusions exhibit a spherically symmetric morphology with an eosinophilic core, containing α-syn with ubiquitin, and can also be formed in Parkinson disease patient-derived hMLOs. We also demonstrate that impaired glucocerebrosidase function promotes the formation of Lewy body-like inclusions in hMLOs derived from patients carrying the SNCA triplication. INTERPRETATION: Taken together, the data indicate that our hMLOs harboring 2 major risk factors (glucocerebrosidase deficiency and wild-type α-syn overproduction) of Parkinson disease provide a tractable model to further elucidate the underlying mechanisms for progressive Lewy body formation. ANN NEUROL 2021;90:490-505.


Assuntos
Glucosilceramidase/deficiência , Corpos de Lewy/metabolismo , Mesencéfalo/metabolismo , Mutação/fisiologia , Organoides/metabolismo , alfa-Sinucleína/biossíntese , Células-Tronco Embrionárias/metabolismo , Glucosilceramidase/genética , Humanos , Corpos de Lewy/genética , Corpos de Lewy/patologia , Mesencéfalo/patologia , Organoides/patologia , alfa-Sinucleína/genética
2.
Opt Express ; 30(11): 19152-19164, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221700

RESUMO

In microscopic imaging of biological tissues, particularly real-time visualization of neuronal activities, rapid acquisition of volumetric images poses a prominent challenge. Typically, two-dimensional (2D) microscopy can be devised into an imaging system with 3D capability using any varifocal lens. Despite the conceptual simplicity, such an upgrade yet requires additional, complicated device components and usually suffers from a reduced acquisition rate, which is critical to properly document rapid neurophysiological dynamics. In this study, we implemented an electrically tunable lens (ETL) in the line-scan confocal microscopy (LSCM), enabling the volumetric acquisition at the rate of 20 frames per second with a maximum volume of interest of 315 × 315 × 80 µm3. The axial extent of point-spread-function (PSF) was 17.6 ± 1.6 µm and 90.4 ± 2.1 µm with the ETL operating in either stationary or resonant mode, respectively, revealing significant depth axial penetration by the resonant mode ETL microscopy. We further demonstrated the utilities of the ETL system by volume imaging of both cleared mouse brain ex vivo samples and in vivo brains. The current study showed a successful application of resonant ETL for constructing a high-performance 3D axially scanning LSCM (asLSCM) system. Such advances in rapid volumetric imaging would significantly enhance our understanding of various dynamic biological processes.


Assuntos
Cristalino , Lentes , Animais , Eletricidade , Camundongos , Microscopia Confocal/métodos , Cintilografia
3.
Stem Cells ; 38(6): 727-740, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32083763

RESUMO

Recent studies have demonstrated the generation of midbrain-like organoids (MOs) from human pluripotent stem cells. However, the low efficiency of MO generation and the relatively immature and heterogeneous structures of the MOs hinder the translation of these organoids from the bench to the clinic. Here we describe the robust generation of MOs with homogeneous distribution of midbrain dopaminergic (mDA) neurons. Our MOs contain not only mDA neurons but also other neuronal subtypes as well as functional glial cells, including astrocytes and oligodendrocytes. Furthermore, our MOs exhibit mDA neuron-specific cell death upon treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, indicating that MOs could be a proper human model system for studying the in vivo pathology of Parkinson's disease (PD). Our optimized conditions for producing homogeneous and mature MOs might provide an advanced patient-specific platform for in vitro disease modeling as well as for drug screening for PD.


Assuntos
Células-Tronco Neurais/metabolismo , Neurotoxinas/metabolismo , Organoides/metabolismo , Doença de Parkinson/genética , Animais , Diferenciação Celular , Modelos Animais de Doenças , Humanos , Doença de Parkinson/patologia
4.
Neuroscientist ; 29(1): 30-40, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34036855

RESUMO

Neuropsychiatric manifestations of coronavirus disease 2019 (COVID-19) have been increasingly recognized. However, the pathophysiology of COVID-19 in the central nervous system remains unclear. Brain organoid models derived from human pluripotent stem cells are potentially useful for the study of complex physiological and pathological processes associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as they recapitulate cellular heterogeneity and function of individual tissues. We identified brain organoid studies that provided insight into the neurotropic properties of SARS-CoV-2. While SARS-CoV-2 was able to infect neurons, the extent of neurotropism was relatively limited. Conversely, choroidal epithelial cells consistently showed a high susceptibility to SARS-CoV-2 infection. Brain organoid studies also elucidated potential mechanism for cellular entry, demonstrated viral replication, and highlighted downstream cellular effects of SARS-CoV-2 infection. Collectively, they suggest that the neuropsychiatric manifestations of COVID-19 may be contributed by both direct neuronal invasion and indirect consequences of neuroinflammation. The use of high throughput evaluation, patient-derived organoids, and advent of "assembloids" will provide a better understanding and functional characterization of the neuropsychiatric symptoms seen in post-acute COVID-19 syndrome. With advancement of organoid technology, brain organoids offer a promising tool for unravelling pathophysiologic clues and potential therapeutic options for neuropsychiatric complications of COVID-19.


Assuntos
COVID-19 , Humanos , COVID-19/complicações , COVID-19/patologia , SARS-CoV-2/fisiologia , Encéfalo/patologia , Sistema Nervoso Central , Organoides
5.
bioRxiv ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37214873

RESUMO

Dopa-responsive dystonia (DRD) and Parkinson's disease (PD) are movement disorders caused by the dysfunction of nigrostriatal dopaminergic neurons. Identifying druggable pathways and biomarkers for guiding therapies is crucial due to the debilitating nature of these disorders. Recent genetic studies have identified variants of GTP cyclohydrolase-1 (GCH1), the rate-limiting enzyme in tetrahydrobiopterin (BH4) synthesis, as causative for these movement disorders. Here, we show that genetic and pharmacological inhibition of BH4 synthesis in mice and human midbrain-like organoids accurately recapitulates motor, behavioral and biochemical characteristics of these human diseases, with severity of the phenotype correlating with extent of BH4 deficiency. We also show that BH4 deficiency increases sensitivities to several PD-related stressors in mice and PD human cells, resulting in worse behavioral and physiological outcomes. Conversely, genetic and pharmacological augmentation of BH4 protects mice from genetically- and chemically induced PD-related stressors. Importantly, increasing BH4 levels also protects primary cells from PD-affected individuals and human midbrain-like organoids (hMLOs) from these stressors. Mechanistically, BH4 not only serves as an essential cofactor for dopamine synthesis, but also independently regulates tyrosine hydroxylase levels, protects against ferroptosis, scavenges mitochondrial ROS, maintains neuronal excitability and promotes mitochondrial ATP production, thereby enhancing mitochondrial fitness and cellular respiration in multiple preclinical PD animal models, human dopaminergic midbrain-like organoids and primary cells from PD-affected individuals. Our findings pinpoint the BH4 pathway as a key metabolic program at the intersection of multiple protective mechanisms for the health and function of midbrain dopaminergic neurons, identifying it as a potential therapeutic target for PD.

6.
Aging Cell ; 21(9): e13694, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35984750

RESUMO

Progressive iron accumulation in the substantia nigra in the aged human brain is a major risk factor for Parkinson's disease and other neurodegenerative diseases. Heavy metals, such as iron, produce reactive oxygen species and consequently oxidative stress in cells. It is unclear, however, how neurons in the substantia nigra are protected against the age-related, excessive accumulation of iron. In this study, we examined the cellular response of the substantia nigra against age-related iron accumulation in rats of different ages. Magnetic resonance imaging confirmed the presence of iron in 6-month-old rats; in 15-month-old rats, iron accumulation significantly increased, particularly in the midbrain. Transcriptome analysis of the region, in which iron deposition was observed, revealed an increase in stress response genes in older animals. To identify the genes related to the cellular response to iron, independent of neurodevelopment, we exposed the neuroblastoma cell line SH-SY5Y to a similar quantity of iron and then analyzed their transcriptomic responses. Among various stress response pathways altered by iron overloading in the rat brain and SH-SY5Y cells, the genes associated with topologically incorrect protein responses were significantly upregulated. Knockdown of HERPUD1 and CLU in this pathway increased susceptibility to iron-induced cellular stress, thus demonstrating their roles in preventing iron overload-induced toxicity. The current study details the neuronal response to excessive iron accumulation, which is associated with age-related neurodegenerative diseases.


Assuntos
Neuroblastoma , Doença de Parkinson , Idoso , Animais , Neurônios Dopaminérgicos/metabolismo , Humanos , Lactente , Ferro/metabolismo , Neuroblastoma/patologia , Doença de Parkinson/metabolismo , Ratos , Substância Negra/metabolismo
7.
Nat Commun ; 12(1): 4730, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354063

RESUMO

Brain organoids derived from human pluripotent stem cells provide a highly valuable in vitro model to recapitulate human brain development and neurological diseases. However, the current systems for brain organoid culture require further improvement for the reliable production of high-quality organoids. Here, we demonstrate two engineering elements to improve human brain organoid culture, (1) a human brain extracellular matrix to provide brain-specific cues and (2) a microfluidic device with periodic flow to improve the survival and reduce the variability of organoids. A three-dimensional culture modified with brain extracellular matrix significantly enhanced neurogenesis in developing brain organoids from human induced pluripotent stem cells. Cortical layer development, volumetric augmentation, and electrophysiological function of human brain organoids were further improved in a reproducible manner by dynamic culture in microfluidic chamber devices. Our engineering concept of reconstituting brain-mimetic microenvironments facilitates the development of a reliable culture platform for brain organoids, enabling effective modeling and drug development for human brain diseases.


Assuntos
Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Dispositivos Lab-On-A-Chip , Neurogênese/fisiologia , Organoides/crescimento & desenvolvimento , Organoides/fisiologia , Animais , Encéfalo/citologia , Meios de Cultura , Fenômenos Eletrofisiológicos , Matriz Extracelular/fisiologia , Estudos de Viabilidade , Perfilação da Expressão Gênica , Humanos , Hidrogéis , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Modelos Anatômicos , Modelos Neurológicos , Neurogênese/genética , Neuroglia/citologia , Neuroglia/fisiologia , Técnicas de Cultura de Órgãos/instrumentação , Técnicas de Cultura de Órgãos/métodos , Organoides/citologia , Suínos
8.
Science ; 366(6472): 1486-1492, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31857479

RESUMO

Disruptions in the ubiquitin protein ligase E3A (UBE3A) gene cause Angelman syndrome (AS). Whereas AS model mice have associated synaptic dysfunction and altered plasticity with abnormal behavior, whether similar or other mechanisms contribute to network hyperactivity and epilepsy susceptibility in AS patients remains unclear. Using human neurons and brain organoids, we demonstrate that UBE3A suppresses neuronal hyperexcitability via ubiquitin-mediated degradation of calcium- and voltage-dependent big potassium (BK) channels. We provide evidence that augmented BK channel activity manifests as increased intrinsic excitability in individual neurons and subsequent network synchronization. BK antagonists normalized neuronal excitability in both human and mouse neurons and ameliorated seizure susceptibility in an AS mouse model. Our findings suggest that BK channelopathy underlies epilepsy in AS and support the use of human cells to model human developmental diseases.


Assuntos
Síndrome de Angelman/metabolismo , Canais de Cálcio Tipo N/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Síndrome de Angelman/fisiopatologia , Animais , Epilepsia/metabolismo , Humanos , Camundongos , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Organoides , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/uso terapêutico , Convulsões/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
9.
Exp Neurobiol ; 26(6): 390-398, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29302206

RESUMO

Early life adversities together with genetic predispositions have been associated with elevated risks of neuropsychiatric disorders during later life. In order to investigate the underlying mechanisms, many chronic, early-life stress paradigms in multiple animal models have been developed. Previously, studies reported that maternal separation (MS) in the early postnatal stages triggers depression-and/or anxiety-like behaviors in rats. However, similar studies using mice have reported inconsistent behavioral outcomes. In this study, we sought to assess behavioral outcomes from two different early-life stress paradigms; a conventional 3-hour MS and a maternal separation with early weaning (MSEW) paradigm using C57BL/6J male mice with independent cohorts. Our data demonstrated that both MS and MSEW paradigms did not produce reported behavioral anomalies. Therefore, MS paradigms in mice require further validation and modification.

10.
Elife ; 52016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26883496

RESUMO

During the development, tight regulation of the expansion of neural progenitor cells (NPCs) and their differentiation into neurons is crucial for normal cortical formation and function. In this study, we demonstrate that microRNA (miR)-128 regulates the proliferation and differentiation of NPCs by repressing pericentriolar material 1 (PCM1). Specifically, overexpression of miR-128 reduced NPC proliferation but promoted NPC differentiation into neurons both in vivo and in vitro. In contrast, the reduction of endogenous miR-128 elicited the opposite effects. Overexpression of miR-128 suppressed the translation of PCM1, and knockdown of endogenous PCM1 phenocopied the observed effects of miR-128 overexpression. Furthermore, concomitant overexpression of PCM1 and miR-128 in NPCs rescued the phenotype associated with miR-128 overexpression, enhancing neurogenesis but inhibiting proliferation, both in vitro and in utero. Taken together, these results demonstrate a novel mechanism by which miR-128 regulates the proliferation and differentiation of NPCs in the developing neocortex.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Proliferação de Células , Córtex Cerebral/embriologia , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Células-Tronco Neurais/fisiologia , Animais , Córtex Cerebral/citologia , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia
11.
Sci Rep ; 6: 20127, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26879573

RESUMO

The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRß) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function.


Assuntos
Relógios Circadianos/genética , Fígado/metabolismo , Microbiota , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Feminino , Microbioma Gastrointestinal , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Gluconeogênese/genética , Inativação Metabólica/genética , Masculino , Camundongos , Especificidade de Órgãos , Receptores Citoplasmáticos e Nucleares/genética , Transcriptoma
12.
Cell Rep ; 16(7): 1942-53, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27498872

RESUMO

Gamma-aminobutyric acid (GABA)-releasing interneurons play an important modulatory role in the cortex and have been implicated in multiple neurological disorders. Patient-derived interneurons could provide a foundation for studying the pathogenesis of these diseases as well as for identifying potential therapeutic targets. Here, we identified a set of genetic factors that could robustly induce human pluripotent stem cells (hPSCs) into GABAergic neurons (iGNs) with high efficiency. We demonstrated that the human iGNs express neurochemical markers and exhibit mature electrophysiological properties within 6-8 weeks. Furthermore, in vitro, iGNs could form functional synapses with other iGNs or with human-induced glutamatergic neurons (iENs). Upon transplantation into immunodeficient mice, human iGNs underwent synaptic maturation and integration into host neural circuits. Taken together, our rapid and highly efficient single-step protocol to generate iGNs may be useful to both mechanistic and translational studies of human interneurons.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Córtex Cerebral/metabolismo , Neurônios GABAérgicos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Prosencéfalo/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem Celular , Córtex Cerebral/citologia , Técnicas de Cocultura , Neurônios GABAérgicos/citologia , Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Interneurônios/citologia , Interneurônios/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Técnicas de Patch-Clamp , Células-Tronco Pluripotentes/citologia , Cultura Primária de Células , Prosencéfalo/citologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Cell Stem Cell ; 19(2): 248-257, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27476966

RESUMO

Recent advances in 3D culture systems have led to the generation of brain organoids that resemble different human brain regions; however, a 3D organoid model of the midbrain containing functional midbrain dopaminergic (mDA) neurons has not been reported. We developed a method to differentiate human pluripotent stem cells into a large multicellular organoid-like structure that contains distinct layers of neuronal cells expressing characteristic markers of human midbrain. Importantly, we detected electrically active and functionally mature mDA neurons and dopamine production in our 3D midbrain-like organoids (MLOs). In contrast to human mDA neurons generated using 2D methods or MLOs generated from mouse embryonic stem cells, our human MLOs produced neuromelanin-like granules that were structurally similar to those isolated from human substantia nigra tissues. Thus our MLOs bearing features of the human midbrain may provide a tractable in vitro system to study the human midbrain and its related diseases.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Melaninas/metabolismo , Mesencéfalo/citologia , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Diferenciação Celular , Linhagem Celular , Humanos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA