Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 627(8002): 73-79, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418887

RESUMO

By directly altering microscopic interactions, pressure provides a powerful tuning knob for the exploration of condensed phases and geophysical phenomena1. The megabar regime represents an interesting frontier, in which recent discoveries include high-temperature superconductors, as well as structural and valence phase transitions2-6. However, at such high pressures, many conventional measurement techniques fail. Here we demonstrate the ability to perform local magnetometry inside a diamond anvil cell with sub-micron spatial resolution at megabar pressures. Our approach uses a shallow layer of nitrogen-vacancy colour centres implanted directly within the anvil7-9; crucially, we choose a crystal cut compatible with the intrinsic symmetries of the nitrogen-vacancy centre to enable functionality at megabar pressures. We apply our technique to characterize a recently discovered hydride superconductor, CeH9 (ref. 10). By performing simultaneous magnetometry and electrical transport measurements, we observe the dual signatures of superconductivity: diamagnetism characteristic of the Meissner effect and a sharp drop of the resistance to near zero. By locally mapping both the diamagnetic response and flux trapping, we directly image the geometry of superconducting regions, showing marked inhomogeneities at the micron scale. Our work brings quantum sensing to the megabar frontier and enables the closed-loop optimization of superhydride materials synthesis.

2.
Nature ; 593(7860): 517-521, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34040210

RESUMO

The phase behaviour of warm dense hydrogen-helium (H-He) mixtures affects our understanding of the evolution of Jupiter and Saturn and their interior structures1,2. For example, precipitation of He from a H-He atmosphere at about 1-10 megabar and a few thousand kelvin has been invoked to explain both the excess luminosity of Saturn1,3, and the depletion of He and neon (Ne) in Jupiter's atmosphere as observed by the Galileo probe4,5. But despite its importance, H-He phase behaviour under relevant planetary conditions remains poorly constrained because it is challenging to determine computationally and because the extremes of temperature and pressure are difficult to reach experimentally. Here we report that appropriate temperatures and pressures can be reached through laser-driven shock compression of H2-He samples that have been pre-compressed in diamond-anvil cells. This allows us to probe the properties of H-He mixtures under Jovian interior conditions, revealing a region of immiscibility along the Hugoniot. A clear discontinuous change in sample reflectivity indicates that this region ends above 150 gigapascals at 10,200 kelvin and that a more subtle reflectivity change occurs above 93 gigapascals at 4,700 kelvin. Considering pressure-temperature profiles for Jupiter, these experimental immiscibility constraints for a near-protosolar mixture suggest that H-He phase separation affects a large fraction-we estimate about 15 per cent of the radius-of Jupiter's interior. This finding provides microphysical support for Jupiter models that invoke a layered interior to explain Juno and Galileo spacecraft observations1,4,6-8.

3.
Phys Rev Lett ; 125(16): 165701, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33124844

RESUMO

Equation-of-state (pressure, density, temperature, internal energy) and reflectivity measurements on shock-compressed CO_{2} at and above the insulating-to-conducting transition reveal new insight into the chemistry of simple molecular systems in the warm-dense-matter regime. CO_{2} samples were precompressed in diamond-anvil cells to tune the initial densities from 1.35 g/cm^{3} (liquid) to 1.74 g/cm^{3} (solid) at room temperature and were then shock compressed up to 1 TPa and 93 000 K. Variation in initial density was leveraged to infer thermodynamic derivatives including specific heat and Gruneisen coefficient, exposing a complex bonded and moderately ionized state at the most extreme conditions studied.

4.
Nature ; 511(7509): 330-3, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25030170

RESUMO

The recent discovery of more than a thousand planets outside our Solar System, together with the significant push to achieve inertially confined fusion in the laboratory, has prompted a renewed interest in how dense matter behaves at millions to billions of atmospheres of pressure. The theoretical description of such electron-degenerate matter has matured since the early quantum statistical model of Thomas and Fermi, and now suggests that new complexities can emerge at pressures where core electrons (not only valence electrons) influence the structure and bonding of matter. Recent developments in shock-free dynamic (ramp) compression now allow laboratory access to this dense matter regime. Here we describe ramp-compression measurements for diamond, achieving 3.7-fold compression at a peak pressure of 5 terapascals (equivalent to 50 million atmospheres). These equation-of-state data can now be compared to first-principles density functional calculations and theories long used to describe matter present in the interiors of giant planets, in stars, and in inertial-confinement fusion experiments. Our data also provide new constraints on mass-radius relationships for carbon-rich planets.

6.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949467

RESUMO

We describe a method for laser-driven planar compression of crystalline hydrogen that starts with a sample of solid para-hydrogen (even-valued rotational quantum number j) having an entropy of 0.06 kB/molecule at 10 K and 2 atm, with Boltzmann constant kB. Starting with this low-entropy state, the sample is compressed using a small initial shock (<0.2 GPa), followed by a pressure ramp that approaches isentropic loading as the sample is taken to hundreds of GPa. Planar loading allows for quantitative compression measurements; the objective of our low-entropy compression is to keep the sample cold enough to characterize crystalline hydrogen toward the terapascal range.

7.
Phys Rev Lett ; 108(6): 065701, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401087

RESUMO

Laser-driven shock compression experiments reveal the presence of a phase transition in MgSiO(3) over the pressure-temperature range 300-400 GPa and 10 000-16 000 K, with a positive Clapeyron slope and a volume change of ∼6.3 (±2.0) percent. The observations are most readily interpreted as an abrupt liquid-liquid transition in a silicate composition representative of terrestrial planetary mantles, implying potentially significant consequences for the thermal-chemical evolution of extrasolar planetary interiors. In addition, the present results extend the Hugoniot equation of state of MgSiO(3) single crystal and glass to 950 GPa.

8.
Phys Rev Lett ; 104(18): 184503, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20482179

RESUMO

By combining diamond-anvil-cell and laser-driven shock wave techniques, we produced dense He samples up to 1.5 g/cm(3) at temperatures reaching 60 kK. Optical measurements of reflectivity and temperature show that electronic conduction in He at these conditions is temperature-activated (semiconducting). A fit to the data suggests that the mobility gap closes with increasing density, and that hot dense He becomes metallic above approximately 1.9 g/cm(3). These data provide a benchmark to test models that describe He ionization at conditions found in astrophysical objects, such as cold white dwarf atmospheres.

9.
Science ; 289(5476): 70-1, 2000 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-17832965

RESUMO

At the boundary between Earth's mantle and its core, physical properties such as density change dramatically. In their Perspective, Garnero and Jeanloz discuss the competing models of this boundary's structure. Distinguishing between the models will require more high-quality seismic data.

10.
Science ; 252(5002): 68-72, 1991 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-17739075

RESUMO

For more than 50 years, observations of earthquakes to depths of 100 to 650 kilometers inside Earth have been enigmatic: at these depths, rocks are expected to deform by ductile flow rather than brittle fracturing or frictional sliding on fault surfaces. Laboratory experiments and detailed calculations of the pressures and temperatures in seismically active subduction zones indicate that this deep-focus seismicity could originate from dehydration and high-pressure structural instabilities occurring in the hydrated part of the lithosphere that sinks into the upper mantle. Thus, seismologists may be mapping the recirculation of water from the oceans back into the deep interior of our planet.

11.
Science ; 251(5000): 1438-43, 1991 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-17779437

RESUMO

Laboratory experiments document that liquid iron reacts chemically with silicates at high pressures (>/=2.4 x 10(10) Pascals) and temperatures. In particular, (Mg,Fe)SiO(3) perovskite, the most abundant mineral of Earth's lower mantle, is expected to react with liquid iron to produce metallic alloys (FeO and FeSi) and nonmetallic silicates (SiO(2) stishovite and MgSiO(3) perovskite) at the pressures of the core-mantle boundary, 14 x 10(10) Pascals. The experimental observations, in conjunction with seismological data, suggest that the lowermost 200 to 300 kilometers of Earth's mantle, the D" layer, may be an extremely heterogeneous region as a result of chemical reactions between the silicate mantle and the liquid iron alloy of Earth's core. The combined thermal-chemical-electrical boundary layer resulting from such reactions offers a plausible explanation for the complex behavior of seismic waves near the core-mantle boundary and could influence Earth's magnetic field observed at the surface.

12.
Science ; 241(4869): 1072-4, 1988 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-17747489

RESUMO

Measurements of the yield strength of SiO(2) glass to pressures as high as 81 gigapascals at room temperature show that the strength of amorphous silica decreases significantly as it is compressed to denser strctures with higher coordination. Above 27 gigapascals, as the silicon in amorphous SiO(2) is continuously transformed from fourfold to sixfold coordination, the strength of the glass decrases by more than an order of magnitude. These data confirm theoretical predictions that the mechanical properties of polymerized amorphous silicates are sensitive to pressure-induced structural transformations and suggest that the viscosity of silica-rich liquids decreases significantly at high pressures. Such a change in melt rheology could enhance the processes of chemical differentiation with depth in the Earth's mantle.

13.
Science ; 239(4842): 902-5, 1988 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-17759037

RESUMO

Infrared spectra demonstrate that at pressures above 20 gigapascals and room temperature the regular tetrahedral coordination of oxygen around both silicon and aluminum ions is severely disrupted in SiO(2), CaMgSi(2)O(6), and CaAlSi(2)O(8) composition glasses. The spectra are consistent with gradual, pressure-induced increases in the coordination numbers of silicon and aluminum. A variety of coordination environments, from sixfold to fourfold, appears to be present at pressures as high as about 40 gigapascals. This apparent change in coordination is not quenchable at room temperature: on decompression, the glasses return to tetrahedral coordination. This continuous and reversible coordination change in amorphous silicates explains the lack of observation of coordination changes in silicate glasses quenched from high pressure, the shallow melting slopes observed for mantle silicates at high pressures, and the possible presence of neutrally buoyant magmas deep within the terrestrial planets.

14.
Science ; 235(4789): 668-70, 1987 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-17833627

RESUMO

Silicate perovskite of composition (Mg(0.88)Fe(0.12)) SiO(3) has been synthesized in a laser-heated diamond-anvil cell to a pressure of 127 gigapascals at temperatures exceeding 2000 K. The perovskite phase was identified and its unit-cell dimensions measured by in situ x-ray diffraction at elevated pressure and room temperature. An analysis of these data yields the first high-precision equation of state for this mineral, with values of the zero-pressure isothermal bulk modulus and its pressure derivative being K(0T) = 266 +/- 6 gigapascals and K'(0T) = 3.9 +/- 0.4. In addition, the orthorhombic distortion of the silicate-perovskite structure away from ideal cubic symmetry remains constant with pressure: the lattice parameter ratios are b/a = 1.032 +/- 0.002 and c/a = 1.444 +/- 0.006. These results, which prove that silicate perovskite is stable to ultrahigh pressures, demonstrate that perovskite can exist throughout the pressure range of the lower mantle and that it is therefore likely to be the most abundant mineral in Earth.

15.
Science ; 223(4631): 53-6, 1984 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-17752990

RESUMO

Cesium iodide, a simple ionic salt at low pressures, undergoes a second-order transformation at 40 gigapascals (400 kilobars) from the cubic B2 (cesium chloride-type) structure to the body-centered tetragonal structure. Also, the energy gap between valence and conduction bands decreases from 6.4 electron volts at zero pressure to about 1.7 electron volts at 60 gigapascals, transforming cesium iodide from a highly ionic compound to a semiconductor. The structural transition increases the rate at which the band gap closes, and an extrapolation suggests that cesium iodide becomes metallic near (or somewhat above) 100 gigapascals. Similar changes in bonding character are likely to occur in other alkali halides at pressures above 100 gigapascals.

16.
Science ; 249(4969): 647-9, 1990 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17831956

RESUMO

A glass exhibiting structural memory has been produced through the compression of a single crystal of AlPO(4) berlinite to 18 gigapascals at 300 kelvin. The unique and extraordinary characteristic of this glass is that upon decompression below 5 gigapascals it transforms back into a single crystal with the same orientation as the starting crystal. This glass has a "memory" of the previous crystallographic orientation of the crystal from which it forms.

17.
Science ; 260(5108): 649-52, 1993 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-17812221

RESUMO

Analyses of molecular spectra and compression data from crystals show that a single function successfully describes the dependence on interatomic separation of both the potential energy of diatomic molecules and the cohesive binding energy of condensed matter. The empirical finding that one function describes interatomic energies for such diverse forms of matter and over a wide range of conditions can be used to extend condensed-matter equations of state but warrants further theoretical study.

18.
Science ; 290(5495): 1338-42, 2000 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-11082058

RESUMO

Unusual physical properties at the core-mantle boundary have been inferred from seismic and geodetic observations in recent years. We show how both types of observations can be explained by a layer of silicate sediments, which accumulate at the top of the core as Earth cools. Compaction of the sediments expels most of the liquid iron but leaves behind a small amount of core material, which is entrained in mantle convection and may account for the isotopic signatures of core material in some hot spot plumes. Extraction of light elements from the liquid core also enhances the vigor of convection in the core and may increase the power available to the geodynamo.

19.
Science ; 166(3906): 758-9, 1969 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-4390430

RESUMO

Polyfucose sulfate and a chondroitin sulfate were isolated from echinoderm connective tissue. Coelenterate and poriferan connective tissues were devoid of these acid polysaccharides.


Assuntos
Evolução Biológica , Tecido Conjuntivo/análise , Polissacarídeos/isolamento & purificação , Ácidos , Animais , Condroitina/isolamento & purificação , Cnidários , Equinodermos , Fucose/isolamento & purificação , Poríferos , Sulfatos/isolamento & purificação
20.
Science ; 268(5216): 1455-7, 1995 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-7770770

RESUMO

Microwave and mid-infrared observations reveal that Mercury's surface contains less FeO + TiO2 and at least as much feldspar as the lunar highlands. The results are compatible with the high albedo (brightness) of Mercury's surface at visible wavelengths in suggesting a rock and soil composition that is devoid of basalt, the primary differentiate of terrestrial mantles. The occurrence of a basalt-free, highly differentiated crust is in accord with recent models of the planet's thermal evolution and suggests that Mercury has retained a hot interior as a result of a combination of inefficient mantle convection and minimal volcanic heat loss.


Assuntos
Compostos Ferrosos/análise , Planeta Mercúrio , Minerais/análise , Silicatos/análise , Titânio/análise , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA