Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Environ Sci Technol ; 53(16): 9734-9743, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31329424

RESUMO

Ion exchange (IEX) can successfully remove natural organic matter (NOM) from surface water. However, the removal mechanism is not well understood due to the complexity and variability of NOM in real source waters as well as the influence of multiple parameters on the removal behavior. For example, this includes the physicochemical properties of the NOM and IEX resin, and the presence of competing anions. Model compounds with a range of physical and chemical characteristics were therefore used to determine the mechanisms of NOM removal by IEX resins. Fifteen model compounds were selected to evaluate the influence of hydrophobicity, size, and charge of organic molecules on the removal by ion exchange, both individually and in mixtures. Three different resins, comprising polystyrene and polyacrylic resin of macroporous and gellular structure, showed that charge density (CD) was the most important characteristic that controlled the removal, with CD of >5 mequiv mgDOC-1 resulting in high removal (≥89%). Size exclusion of compounds with high MW (≥8 kDa) was evident. The hydrophobicity of the resin and model compound was particularly important for removal of neutral molecules such as resorcinol, which was best removed by the more hydrophobic polystyrene resin. Relationships were identified that provided explanations of the interactions observed between NOM and IEX resin in real waters.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Ânions , Troca Iônica , Resinas de Troca Iônica , Compostos Orgânicos
2.
Water Sci Technol ; 79(11): 2126-2134, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31318350

RESUMO

This study examined the dynamics of iron (Fe) and phosphorus (P) transformations from the surface sludge accumulated in tertiary horizontal flow (HF) treatment wetlands (TW) chemically dosed for P removal. Site surveys showed P was stored in HF TW with and without artificial aeration on average, with instances of P release in the non-aerated site. Controlled experiments revealed storing TW surface sludge for over 24 hours resulted in limited oxygen and nitrate concentrations, resulting in both P and Fe release. The rate of P release increased with increasing water-sludge P concentration gradients, and the reaction could take as little as 10 minutes. Convection had no impact on P transformation rates. The findings suggest mitigation strategies could include the manipulation of the biogeochemical environment by managing oxygen and nitrate concentrations within the wetlands. A better understanding of links between Fe, P, and nitrate is needed to test proactive mitigation strategies for small wastewater treatment plants.


Assuntos
Fósforo , Eliminação de Resíduos Líquidos , Áreas Alagadas , Ferro , Esgotos , Águas Residuárias
3.
Water Sci Technol ; 80(12): 2344-2351, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32245926

RESUMO

Heat recovery from combined sewers has a significant potential for practical renewable energy provision as sources of heat demand and sewer pipes are spread across urban areas. Sewers are continuously recharged with relatively hot wastewater, as well as interacting with heat sources from surrounding air and soil. However, the potential effects of modifying sewage temperature on in-sewer processes have received little attention. The deposition of fats, oils and greases (FOGs) and hydrogen sulphide formation are biochemical processes and are thus influenced by temperature. This paper utilises a case study approach to simulate anticipated temperature reductions in a sewer network due to heat recovery. A laboratory investigation into the formation of FOG deposits at temperatures varying between 5 °C and 20 °C provided mixed results, with only a weak temperature influence, highlighting the need for more research to fully understand the influence of the wastewater composition as well as temperature on FOG deposit formation. A separate modelling investigation into the formation of hydrogen sulphide when inflow temperature is varied between 5 °C and 20 °C showed considerable reductions in hydrogen sulphide formation. Hence, heat extraction from sewers could be a promising method for managing some in-sewer processes, combined with traditional methods such as chemical dosing.


Assuntos
Temperatura Alta , Esgotos , Gorduras , Óleos , Águas Residuárias
4.
Environ Sci Technol ; 48(1): 104-12, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24266610

RESUMO

Chemical transformations of silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs) during wastewater treatment and sludge treatment must be characterized to accurately assess the risks that these nanomaterials pose from land application of biosolids. Here, X-ray absorption spectroscopy (XAS) and supporting characterization methods are used to determine the chemical speciation of Ag and Zn in sludge from a pilot wastewater treatment plant (WWTP) that had received PVP coated 50 nm Ag NPs and 30 nm ZnO NPs, dissolved metal ions, or no added metal. The effects of composting and lime and heat treatment on metal speciation in the resulting biosolids were also examined. All added Ag was converted to Ag2S, regardless of the form of Ag added (NP vs ionic). Zn was transformed to three Zn-containing species, ZnS, Zn3(PO4)2, and Zn associated Fe oxy/hydroxides, also regardless of the form of Zn added. Zn speciation was the same in the unamended control sludge. Ag2S persisted in all sludge treatments. Zn3(PO4)2 persisted in sludge and biosolids, but the ratio of ZnS and Zn associated with Fe oxy/hydroxide depended on the redox state and water content of the biosolids. Limited differences in Zn and Ag speciation among NP-dosed, ion-dosed, and control biosolids indicate that these nanoparticles are transformed to similar chemical forms as bulk metals already entering the WWTP.


Assuntos
Nanopartículas Metálicas/análise , Prata/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Óxido de Zinco/análise , Compostos de Cálcio/química , Temperatura Alta , Nanopartículas Metálicas/química , Óxidos/química , Prata/química , Solo/química , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/química , Óxido de Zinco/química
5.
Environ Technol ; 35(1-4): 400-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24600880

RESUMO

Ultraviolet (UV) technologies have been very successful in disinfection applications due to their ability to inactivate microorganisms without producing harmful disinfection by-products. However, there have been a number of concerns associated with the use of conventional UV systems such as hazardous mercury content, high capital investment and reduced electrical efficiency. These concerns have set limitations for the use of UV processes. The study evaluates the development of light emitting diode (LED) technology as an alternative UV source over the last 5 years, analyses the projections provided by the researchers and UV LED manufacturers and presents the information in a cost model with the aim to predict the timeline at which UV LED will compete with traditional UV low pressure high output technology in the commercial market at full-scale residential and industrial disinfection applications.


Assuntos
Desinfecção/economia , Desinfecção/instrumentação , Iluminação/economia , Iluminação/instrumentação , Modelos Econômicos , Semicondutores/economia , Simulação por Computador , Análise Custo-Benefício , Raios Ultravioleta , Reino Unido
6.
Bioresour Technol ; 406: 130975, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879058

RESUMO

Particulate matter hydrolysis is the bottleneck in anaerobic treatment of municipal wastewater in temperate climates. Low temperatures theoretically slow enzyme-substrate interactions, hindering utilization kinetics, but this remains poorly understood. ß-glucosidase, protease, and lipase activities were evaluated in two pilot-scale upflow anaerobic sludge blanket (UASB) reactors, inoculated with different sludges and later converted to anaerobic membrane bioreactors (AnMBRs). Despite similar methane production and solids hydrolysis rates, significant differences emerged. Specific activity peaked at 37 °C, excluding the predominance of psychrophilic enzymes. Nevertheless, the Michaelis-Menten constant (Km) indicated high enzyme-substrate affinity at the operational temperature of 15-20 °C, notably greater in AnMBRs. It is shown, for the first time, that different seed sludges can equally adapt, as hydrolytic enzymatic affinity to the substrate reached similar values in the two reactors at the operational temperature and identified that membrane ultrafiltration impacted hydrolysis by a favourable enzyme Michaelis-Menten constant.

7.
Sci Total Environ ; 912: 169441, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123089

RESUMO

The water industry worldwide experiences numerous sewer blockages each year, partially attributed to the accumulation of fat, oil and grease (FOG). Managing this issue involves various strategies, including the requirement for installation of grease interceptors (GIs) installation. However, the claimed efficacy of commercial GIs of eliminating 99 % of FOG has been questioned for many years because FOG deposit formation occurs despite food service establishments (FSEs) using GIs, therefore detailed understanding of FOG wastewater compositions and its removal by GIs is required. This study provides an insight into the key FOG components such as FOG particle size, metals and fatty acid (FA) profile in GI influent and effluent, and within the GI, at three different FSEs. Analysis of FAs identified substantial proportions of extra-long-chain FAs in the effluents, including arachidic (C20:0), behenic (C22:0), mead (C20:3), lignoceric (C24:0), and nervonic (C24:1) acids. In contrast, the household kitchen released palmitic (C16:0), oleic (C18:1) and linoleic (C18:2) acids. It was further observed that scums effectively remove the larger FOG particles, leaving only 10 % below 75.4 µm. Notably, FSEs which employed automatic dishwashers produced up to 80.4 % of particles ≤45 µm, whereas FSEs and household kitchen which used handwash sinks generated only 36.9 % and 26.3 % of particles ≤45 µm, respectively. This study demonstrated that the commercial GIs do not remove FOG entirely but clearly demonstrated that they discharge high concentrations of FOG with extra-long FFAs which were attributed to the occurrence of microbial activity and hydrolysis of triglycerides within the GI, potentially contributing to FOG deposition.


Assuntos
Gorduras , Serviços de Alimentação , Macrolídeos , Esgotos , Hidrocarbonetos/análise
8.
Environ Technol ; 34(17-20): 2477-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24527608

RESUMO

We report on the effectiveness of sonication on controlling the growth of four problematic algal species which are morphologically different and from three algal divisions. Two cyanobacterial species Microcystis aeruginosa (unicellular) and Aphanizomenon flos-aquae (filamentous), one green alga Scenedesmus subspicatus (colonial) and lastly a diatom species Melosira sp. (filamentous) were subjected to ultrasound of selected low to high frequencies ranging from 20 to 1144 kHz. Microcystis aeruginosa and Scenedesmus subspicatus highest cell removal rates were 16 +/- 2% and 20 +/- 3% when treated with the same ultrasound frequency of 862 kHz but differing energy levels of 133 and 67 kWh m(-3), respectively. Aphanizomenon flos-aquae best removal rate was 99 +/- 1% after 862 kHz and 133 kWh m(-3) of energy, with Melosira sp. achieving its highest cell removal at 83% subsequent to ultrasound of 20 kHz and 19 kWh m(-3). Microcystis aeruginosa and Scenedesmus subspicatus are considered non-susceptible species to ultrasound treatment from a water treatment perspective due to their low cell removal rates; however, photosynthetic activity reduction of 65% for Microcystis aeruginosa does indicate the possible utilization of ultrasound to control bloom growth, rather than bloom elimination. Conversely, Aphanizomenon flos-aquae and Melosira sp. are deemed species highly susceptible to ultrasound. Morphological differences in shape (filamentous/non-filamentous) and cell wall structure (silica/peptidoglycan), and presence of gas vacuoles are probable reasons for these differing levels of susceptibility to ultrasound.


Assuntos
Aphanizomenon/citologia , Diatomáceas/citologia , Microcystis/citologia , Scenedesmus/citologia , Sonicação/métodos , Aphanizomenon/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento , Eutrofização , Água Doce/microbiologia , Microcystis/crescimento & desenvolvimento , Scenedesmus/crescimento & desenvolvimento
9.
Sci Total Environ ; 887: 163982, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37160179

RESUMO

Coagulant dosing to achieve low phosphorus concentrations in wastewater effluents may favour the removal of trace organics such as pharmaceuticals, plasticisers and flame retardants. Nevertheless, the behaviour of trace organics in coagulation processes is currently poorly understood because of the complex interactions between these compounds, the coagulants and dissolved organic matter (DOM). This study assessed the coagulation removal from synthetic secondary effluent of twenty-four compounds including ten PFAS and four brominated flame retardants. Testing involved two coagulants (alum, ferric chloride) and five DOM surrogates (resorcinol, benzoic acid, citric acid, tannic acid, humic acid); DOM surrogates had assorted molecular weights, structures, charges, and hydrophobicity. With coagulant doses of 14 mg Fe/L and 4 mg Al/L, ten trace organics were removed by >30 % in the presence of at least one DOM surrogate. Humic acid effected the highest removals owing to complexation of trace organics and subsequent co-removal by adsorption or sweep floc. For instance, removal extents for three brominated diphenyl ethers were 60 to 75 % with Al and 50 to 88 % with Fe (initial concentration 0.4 to 0.8 ng/L); PFTDA, a long-chain PFAS, was removed by 87 and 91 % with Fe in the presence of tannic or humic acid, respectively (initial concentration 0.03 µg/L). The varying coagulation performance of different treatment works in terms of trace substance removal can be explained because of the site-specific DOM characteristics. Addition of humic acids as complexing agents has the potential to improve the removal of hydrophobic trace substances, including some long-chain PFAS and brominated flame retardants.

10.
Water Sci Technol ; 66(8): 1684-90, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22907452

RESUMO

Dissolved air flotation (DAF) incorporating filtration (DAFF) is used at the Bolivar wastewater treatment plant (WWTP) to polish lagoon effluent for reuse. Elevated algal populations are frequently experienced and can lead to increased coagulant requirements and process control issues. Streaming current detectors (SCDs) and a charge demand analyser (CDA) were used to monitor the full-scale plant. This was followed by an optimisation study using a pilot plant with a CDA. It was found that the normal operational charge demand range for DAF at Bolivar was between -46 and -40 µeq L(-1). Decreasing the pH of coagulation reduced coagulant consumption and facilitated more sensitive CDA responses to changes in alum dose.


Assuntos
Filtração/métodos , Eliminação de Resíduos Líquidos/métodos , Compostos de Alúmen/química
11.
Environ Technol ; 33(22-24): 2741-50, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23437675

RESUMO

The treatment of spent metalworking fluids (MWFs) is difficult due to their complex and variable composition. Small businesses often struggle to meet increasingly stringent legislation and rising costs as they need to treat this wastewater on site annually over a short period. Larger businesses that treat their wastewater continuously can benefit from the use of biological processes, although new MWFs designed to resist biological activity represent a challenge. A three-stage treatment is generally applied, with the oil phase being removed first, followed by a reduction in COD loading and then polishing of the effluent's quality in the final stage. The performance of advanced oxidation processes (AOPs), which could be of benefit to both types of businesses was studied. After assessing the biodegradability of spent MFW, different AOPs were used (UV/H2O2, photo-Fenton and UV/TiO2) to establish the treatability of this wastewater by hydroxyl radicals (*OH). The interactions of both the chemical and biological treatments were also investigated. The wastewater was found to be readily biodegradable in the Zahn-Wellens test with 69% COD and 74% DOC removal. The UV/TiO2 reactor was found to be the cheapest option achieving a very good COD removal (82% at 20 min retention time and 10 L min(-1) aeration rate). The photo-Fenton process was found to be efficient in terms of degradation rate, achieving 84% COD removal (1 M Fe2+, 40 M H2O2, 20.7 J cm(-2), pH 3) and also improving the wastewater's biodegradability. The UV/H202 process was the most effective in removing recalcitrant COD in the post-biological treatment stage.


Assuntos
Biodegradação Ambiental , Metais/química , Peróxido de Hidrogênio/química , Oxirredução , Titânio/química , Raios Ultravioleta
12.
Sci Total Environ ; 815: 152626, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35016936

RESUMO

Removal of pesticides from agricultural run-off close to the point of application has the potential to prevent or reduce the pollution of water sources used for drinking. This research considered the novel application of activated carbon (AC) fabric as a sorbent material for removal of pesticides from field run-off. AC fabric was tested for the removal of the molluscicide pesticide metaldehyde under a range of flow rates at both laboratory and pilot scale. Metaldehyde at an initial concentration of 10 µg/L was removed effectively from deionised (DI) water and real source water by the AC cloth under all conditions tested, reaching removal of 1375 and 876 µg/g (equivalent to 169 and 264 mg/m2), respectively. The adsorption followed pseudo-second order kinetics (k2 of 29.9 and 34.8 g/µg min for the AC fabric and GAC), providing rapid removal of metaldehyde within the first 5 min of contact. In single pass and flow through conditions, stabilised removal of 46% metaldehyde was achieved by the AC fabric bundle for treatment of 700 L of real water in a pilot scale flume. This equated to removal of 454 µg/m2, although significantly more removal would be expected over longer duration testing given the stabilised removal and the equilibrium capacity of the fabric seen during the batch isotherm testing. The work provides evidence to show that AC fabric could be used in the catchment to reduce peak loads of pesticides in sources used for drinking water.


Assuntos
Água Potável , Praguicidas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Cinética , Poluentes Químicos da Água/análise
13.
Water Res ; 217: 118420, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35468557

RESUMO

A pilot scale chlorine contact tank (CCT) with flexible baffling was installed at an operational water treatment plant (WTP), taking a direct feed from the outlet of the rapid gravity filters (RGF). For the first time, disinfection efficacy was established by direct microbial monitoring in a continuous reactor using flow cytometry (FCM). Disinfection variables of dose, time, and hydraulic efficiency (short circuiting and dispersion) were explored following characterisation of the reactor's residence time distributions (RTD) by tracer testing. FCM enabled distinction to be made between changes in disinfection reactor design where standard culture-based methods could not. The product of chlorine concentration (C) and residence time (t) correlated well with inactivation of microbes, organisms, with the highest cell reductions (N/N0) reaching <0.025 at Ctx¯ of 20 mg.min/L and above. The influence of reactor geometry on disinfection was best shown from the Ct10. This identified that the initial level of microbial inactivation was higher in unbaffled reactors for low Ct10 values, although the highest levels of inactivation of 0.015 could only be achieved in the baffled reactors, because these conditions enabled the highest Ct10 values to be achieved. Increased levels of disinfection were closely associated with increased formation of the trihalomethane disinfection by-products. The results highlight the importance of well-designed and operated CCT. The improved resolution afforded by FCM provides a tool that can dynamically quantify disinfection processes, enabling options for much better process control.


Assuntos
Cloro , Purificação da Água , Desinfecção/métodos , Citometria de Fluxo , Purificação da Água/métodos
14.
Environ Technol ; 33(15-16): 1685-97, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22439554

RESUMO

Intermittent aeration of activated sludge plants (ASPs) is a potential strategy that may help deliver reduced operational costs while providing an adequate effluent quality. This review paper critically assesses the implications of temporary turning aeration offin continuous flow nitrifying ASPs, including impact on dissolved oxygen concentrations, process biology and operational parameters. The potential savings and pitfalls of the approach are further illustrated through an example scenario. Findings from this review indicate rapid dissolved oxygen depletion times of 1-60 minutes and a significant reduction of nitrification rates from 0.12 to less than 0.04 g NH4-N/g VSS/d. Further negative impacts include a potential increase in nitrous oxide emissions from 0.07% to 27% N2O-N per mole of NH4-N oxidized; enhanced filamentous bacteria growth; a noticeable increase in effluent turbidity developing within one hour of air supply interruption; and, if no mechanical mixing is in place, risk of mixed liquor suspended solids settling in the bioreactor within short times (23-53 min). However, the potential savings in terms of aeration costs could amount to 33%-45% if instrumentation adequacy and impact on process biology and carbon equivalent emissions are excluded from the economic analysis. Further research on the areas of nitrous oxide emissions and the use of hybrid systems to provide resilience and robustness to the intermittent operation of continuous flow nitrifying ASPs is recommended.


Assuntos
Nitrificação , Esgotos , Gerenciamento de Resíduos , Oxigênio/análise , Esgotos/análise , Esgotos/microbiologia
15.
Sci Total Environ ; 783: 146834, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-33862397

RESUMO

This study was completed to understand the resilience of an ion exchange (IEX) process for its ability to remove variable ammonium (NH4+-N) loads) and to prove its environmental benefits through a life cycle assessment (LCA). The tertiary 10 m3/day demonstration scale IEX was fed with variable NH4+-N concentrations (<0.006-26 mg NH4+-N /L) naturally found in municipal wastewater. Zeolite-N was used as ion exchange media and regeneration was completed with 10% potassium chloride (KCl). The influent NH4+-N concentration impacted the ion exchange capacity, which ranged from 0.9-17.7 mg NH4+-N/g media. When the influent concentration was <2.5 mg NH4+-N/L, the Zeolite-N released NH4+-N (up to 12%). However, the exchange increased up to 62% when the influent NH4+-N load peaked, confirming the resilience of the process. A 94% regeneration efficiency was obtained with fresh regenerant, however, with the increase of the mass of NH4+-N on the media, the regeneration efficiency decreased. An optimisation of the volume of brine and regeneration contact time is suggested. To further measure the benefits of the IEX process, an LCA was conducted, for a 10,000 population equivalent reference scenario, and compared with traditional nitrification-denitrification WWTP. The LCA revealed that IEX with regenerant re-use and NH4+-N recovery through a membrane stripping process resulted in reductions of: 25% cumulative energy demand; 66% global warming potential and 62% marine eutrophication potential, when compared to traditional WWTP. This work demonstrated that the IEX process is an efficient and an environmentally benign technology that can be widely applied in WWTPs.

16.
Environ Technol ; 42(10): 1521-1530, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31560609

RESUMO

The use of microalgae for nutrients removal from wastewater has attracted more attention in recent years. More specifically, immobilized systems where algae cells are entrapped in beads in a matrix of a polysaccharide such as alginate have shown a great potential for nutrients removal from wastewater to low levels with reduced retention times and hence smaller footprint. However, a significant operational cost in the up-scaling of alginate-immobilized algae reactors will be the gelling agent alginate. To reduce expenditure of this consumable a proof-of-concept is given for an alginate recycling method using sodium citrate as a dissolving agent. Using algae beads made from virgin and recycled alginate yielded comparable removal rates for both phosphorus and nitrogen compounds from wastewater. At labscale, an alginate recovery of approximately 70% can be achieved which would result in a net operational cost reduction of about 60%.


Assuntos
Microalgas , Eliminação de Resíduos Líquidos , Alginatos , Nitrogênio , Fósforo , Águas Residuárias
17.
Environ Sci Technol ; 44(16): 6443-9, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20669902

RESUMO

Dosing polymer to improve floc characteristics is a widely practiced method in water treatment to improve floc strength, and there is strong operational evidence showing the benefit of polymer dosing. However, there is a paucity of information on how polymer operates in terms of quantifying the resulting floc size and strength over different size scales. A dual particle sizing approach was used to monitor large floc that contain most of the sludge volume and small floc that can cause downstream treatability problems for systems with and without polymer dosing. The polymer investigated was a slightly anionic polyacrylamide dosed in water collected post dissolved air flotation at concentrations of 0-0.03 mg L(-1). With increasing polymer dose, median floc size increased from 228 to 325 microm. Floc responses to increased shear rate showed that polymer dosing increased resistance to floc break-up. While all of the flocs showed high potential to regrow, regrowth was greatest in polymer-dosed systems, where flocs exceeded the size that they had reached previously. Increasing the dose of polymer showed increased removal of small particles (<8 microm) showing that polymer was able to effectively remove particles that are liable to cause downstream problems.


Assuntos
Resinas Acrílicas/química , Filtração , Floculação , Tamanho da Partícula
18.
Environ Technol ; 31(7): 781-90, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20586240

RESUMO

Previous research has shown that dosing polymers directly to the saturator of a dissolved air flotation (DAF) process in replacement of upstream coagulation can achieve algae removal comparable to that of conventional treatment, as a result of bubble modification. In this paper we further explore the application of polyDADMAC as a bubble modifier in this adapted DAF process. It was determined that removal improved with increasing polyDADMAC molecular weight (MW). Removal efficiencies obtained for Microcystis aeruginosa were much greater than those predicted theoretically, and were attributed to a potential projection of the polymer into the aqueous phase, increasing the swept volume of the bubble. PolyDADMAC dose and the resultant removal efficiency were dependent on the character of the associated algogenic organic matter (AOM). The AOM with high MW, low charge and significant hydrophobicity and protein content enabled co-operative binding, while that of high charge and low hydrophobicity hindered attachment.


Assuntos
Compostos Alílicos/química , Técnicas de Cultura de Células/métodos , Meios de Cultura/química , Eucariotos/fisiologia , Gases/química , Polímeros/química , Compostos de Amônio Quaternário/química , Tensoativos/química , Microbiologia da Água , Propriedades de Superfície
19.
Environ Technol ; 31(13): 1423-34, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21214001

RESUMO

This study investigated the photocatalytic oxidation of a raw water rich in hydrophilic natural organic matter (NOM) and the impact on the removal of: dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254) and trihalomethanes formation potential (THMFP). Dissolved organic carbon and UV254 removals were 40% and 55%, respectively, after 1 min irradiation time and 1 g L(-1) dose of TiO2. The THMFP content was reduced from 305 microg L(-1) in raw water to 144 microg L(-1) after 10 min treatment, whereas chlorine reactivity was stable with treatment. The results showed that larger molecular weight species were preferentially degraded during the process. Dissolved organic carbon and THMFP removals reached 60% and 70%, respectively, after photocatalytic oxidation and granular activated carbon (GAC) columns.


Assuntos
Recuperação e Remediação Ambiental/métodos , Fotoquímica , Catálise , Peso Molecular , Oxirredução , Espectrofotometria Ultravioleta , Titânio/química
20.
Sci Rep ; 10(1): 12426, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709876

RESUMO

The application of ion exchange process for ammonium (NH4+-N) removal from wastewater is limited due to the lack of suppliers of engineered zeolites which present high ammonium exchange capacity (AEC) and mechanical strength. This study focuses on the preparation and evaluation of synthetic zeolites (Zeolite1-6) by measuring AEC and resistance to attrition and compression, against natural (clinoptilolite) and engineered zeolite (reference, Zeolite-N). At high NH4+-N concentrations, Zeolite6 and Zeolite2 showed capacities of 4.7 and 4.5 meq NH4+-N/g media, respectively. In secondary effluent wastewater (initial NH4+-N of 0.7 meq NH4+-N/L), Zeolite1, 2 and 6 showed an AEC of 0.05 meq NH4+-N/g media, similar to Zeolite-N (0.06 meq NH4+-N /g media). Among the synthetic zeolites, Zeolite3 and 6 showed higher resistance to attrition (disintegration rate = 2.7, 4.1 NTU/h, respectively) when compared with Zeolite-N (disintegration rate = 13.2 NTU/h). Zeolite4 and 6 showed higher resistance to compression (11 N and 6 N, respectively). Due its properties, Zeolite6 was further tested in an ion exchange demonstration scale plant treating secondary effluent from a municipal wastewater treatment plant. However, Zeolite6 disintegrated after 2 months of operation, whilst Zeolite-N remained stable for 1.5 year. This highlighted the importance of the zeolite's mechanical strength for successful application. In particular, future work should focus on the optimization of the zeolite production process (temperature, time and dimension of the kiln during calcination) to obtain an engineered zeolite with a spherical shape thus reducing eventual sharp edges which can affect mechanical strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA