Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 290(2010): 20231458, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37909081

RESUMO

Parental care is considered crucial for the enhanced survival of offspring and evolutionary success of many metazoan groups. Most bryozoans incubate their young in brood chambers or intracoelomically. Based on the drastic morphological differences in incubation chambers across members of the order Cheilostomatida (class Gymnolaemata), multiple origins of incubation were predicted in this group. This hypothesis was tested by constructing a molecular phylogeny based on mitogenome data and nuclear rRNA genes 18S and 28S with the most complete sampling of taxa with various incubation devices to date. Ancestral character estimation suggested that distinct types of brood chambers evolved at least 10 times in Cheilostomatida. In Eucratea loricata and Aetea spp. brooding evolved unambiguously from a zygote-spawning ancestral state, as it probably did in Tendra zostericola, Neocheilostomata, and 'Carbasea' indivisa. In two further instances, brooders with different incubation chamber types, skeletal and non-skeletal, formed clades (Scruparia spp., Leiosalpinx australis) and (Catenicula corbulifera (Steginoporella spp. (Labioporella spp., Thalamoporella californica))), each also probably evolved from a zygote-spawning ancestral state. The modular nature of bryozoans probably contributed to the evolution of such a diverse array of embryonic incubation chambers, which included complex constructions made of polymorphic heterozooids, and maternal zooidal invaginations and outgrowths.


Assuntos
Briozoários , Invertebrados , Animais , Filogenia , Reprodução/genética
2.
Sci Adv ; 8(13): eabm7452, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35353568

RESUMO

Phylogenetic relationships and the timing of evolutionary events are essential for understanding evolution on longer time scales. Cheilostome bryozoans are a group of ubiquitous, species-rich, marine colonial organisms with an excellent fossil record but lack phylogenetic relationships inferred from molecular data. We present genome-skimmed data for 395 cheilostomes and combine these with 315 published sequences to infer relationships and the timing of key events among c. 500 cheilostome species. We find that named cheilostome genera and species are phylogenetically coherent, rendering fossil or contemporary specimens readily delimited using only skeletal morphology. Our phylogeny shows that parental care in the form of brooding evolved several times independently but was never lost in cheilostomes. Our fossil calibration, robust to varied assumptions, indicates that the cheilostome lineage and parental care therein could have Paleozoic origins, much older than the first known fossil record of cheilostomes in the Late Jurassic.

3.
PLoS One ; 12(1): e0170010, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28095467

RESUMO

Polyembryony-the production of multiple cloned embryos from a single fertilised egg-is a seemingly paradoxical combination of reproductive modes that nevertheless persists in diverse taxa. We document features of polyembryony in the Cyclostomata (Bryozoa)-an ancient order of modular colonial marine invertebrates-that suggest a substantial reduction in the paradoxical nature of this enigmatic reproductive mode. Firstly, we provide molecular evidence for polyembryony in three exemplar species, supporting the widely cited inference that polyembryony characterises the entire order. Secondly, genotyping demonstrates protracted release of cloned offspring from the primary embryo in a given gonozooid (chamber for embryonic incubation), thus exposing the same genotype to changing environmental conditions over time. Finally, we confirm that each gonozooid produces a distinct genotype, with each primary embryo being the result of a separate fertilisation event. We hypothesise that the sustained release of one or a few genotypes against varying environmental conditions achieves levels of risk-spreading similar to those in organisms that release multiple, unique genotypes at a single time. We argue that polyembryony, specifically with the production of a large number of progeny per fertilisation event, has been favoured in the Cyclostomata over long geological periods.


Assuntos
Briozoários/embriologia , Briozoários/genética , Clonagem de Organismos , Filogenia , Reprodução/genética , Animais , Células Clonais , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA