Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 76(13): 5219-28, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21618970

RESUMO

Photophysical data and orbital energy levels (from electrochemistry) were compared for molecules with the same BODIPY acceptor part (red) and perpendicularly oriented xanthene or BODIPY donor fragments (green). Transfer of energy, hence the photophysical properties of the cassettes, including the pH dependent fluorescence in the xanthene-containing molecules, correlates with the relative energies of the frontier orbitals in these systems. Intracellular sensing of protons is often achieved via sensors that switch off completely at certain pH values, but probes of this type are not easy to locate inside cells in their "off-state". A communication from these laboratories (J. Am. Chem. Soc., 2009, 131, 1642-3) described how the energy transfer cassette 1 could be used for intracellular imaging of pH. This probe is fluorescent whatever the pH, but its exact photophysical properties are governed by the protonation states of the xanthene donors. This work was undertaken to further investigate correlations between structure, photophysical properties, and pH for energy transfer cassettes. To achieve this, three other cassettes 2-4 were prepared: another one containing pH-sensitive xanthene donors (2) and two "control cassettes" that each have two BODIPY-based donors (3 and 4). Both the cassettes 1 and 2 with xanthene-based donors fluoresce red under slightly acidic conditions (pH < ∼6) and green when the medium is more basic (>∼7), whereas the corresponding cassettes with BODIPY donors give almost complete energy transfer regardless of pH. The cassettes that have BODIPY donors, by contrast, show no significant fluorescence from the donor parts, but the overall quantum yields of the cassettes when excited at the donor (observation of acceptor fluorescence) are high (ca. 0.6 and 0.9). Electrochemical measurements were performed to elucidate orbital energy level differences between the pH-fluorescence profiles of cassettes with xanthene donors, relative to the two with BODIPY donors. These studies confirm energy transfer in the cassettes is dramatically altered by analytes that perturb relative orbital levels. Energy transfer cassettes with distinct fluorescent donor and acceptor units provide a new, and potentially useful, approach to sensors for biomedical applications.


Assuntos
Compostos de Boro/química , Compostos de Boro/síntese química , Cristalografia por Raios X , Eletroquímica , Transferência de Energia , Fluorescência , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Estereoisomerismo
2.
Inorg Chem ; 50(5): 1849-55, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21299197

RESUMO

The versatile N(2)S(2) tetradentate ligands (bme-daco)(2-), (bme-dach)(2-), and (ema)(4-) are known to accommodate many divalent transition-metal ions (M = Ni(II), Pd(II), Pt(II), Pb(II), Zn(II), Cd(II), Cu(II), and Fe(II)) while maintaining reactivity at the S-thiolate sites of the respective N(2)S(2)M complexes. The vanadyl ion, of interest for its pharmacological possibilities and its spin-label reporter properties for bioinorganic studies, also shows an affinity for such mixed nitrogen/sulfur-donor environments. Thus, (V≡O)(2+) analogues of a well-characterized series of N(2)S(2)Ni complexes have been prepared as mimics of possible N(2)S(2)(V≡O) formed from in vivo binding sites of the tripeptide motif, Cys-X-Cys. The nucleophilicity of the S-thiolate in these systems is explored with alkylating agents. IR [ν(VO)], electronic spectral, and electron paramagnetic resonance measurements are presented. X-ray diffraction studies of (bme-daco)(V≡O), (bme-dach)(V≡O), and [Et(4)N](2)[(ema)(V≡O)] further characterize the vanadyl complexes. A comparison of the spectral properties with the product of vanadyl interaction with the CGC tripeptide, the biological analogue of the tetraanionic N(2)S(2) ligand, is given.


Assuntos
Compostos de Vanádio/síntese química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Vanádio/química , Difração de Raios X
3.
Inorg Chem ; 49(12): 5503-14, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20507173

RESUMO

The well-established presence of histidine donors in binding sites of Ni-containing biomolecules prompts the study of orientational preference and stereodynamic nature of flat monodentate ligands (L = imidazoles, pyridine and an N-heterocyclic carbene) bound to planar N(2)SNi moieties. Square planar [N(2)SNiL](n+) complexes are accessed through bridge-splitting reactions of dimeric, thiolate-S bridged [N(2)SNi](2) complexes. The solid state molecular structures of three mononuclear products, and three monothiolate bridged dinickel complexes, reveal that the plane of the added monodentate ligand orients largely orthogonal to the N(2)SNiL square plane. Variable temperature (1)H NMR characterization of dynamic processes and ground state isomer ratios of imidazole complexes in their stopped exchange limiting spectra, readily correlate with density functional theory (DFT)-guided interpretation of Ni-L rotational activation barriers. Full DFT characterization finds Ni-L bond lengthening as well as a tetrahedral twist distortion in the transition state, reaching a maximum in the NHC complex, and relating mainly to the steric hindrance derived both from the ligand and the binding pocket. In the case of the imidazole ligands a minor electronic contribution derives from intramolecular electrostatic interactions (imidazole C-2 C-H(delta+)- - S(delta-) interaction). Computational studies find this donor-acceptor interaction is magnified in O-analogues, predicting coplanar arrangements in the ground state of N(2)ON(imid)Ni complexes.


Assuntos
Imidazóis/química , Níquel/química , Compostos Organometálicos/química , Piridinas/química , Compostos de Sulfidrila/química , Simulação por Computador , Cristalografia por Raios X , Compostos Heterocíclicos/química , Ligantes , Metano/análogos & derivados , Metano/química , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Termodinâmica
4.
Inorg Chem ; 48(15): 7280-93, 2009 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-19572492

RESUMO

Dimeric (N(2)S)Ni complexes and the monomeric N(2)S(2) bismercaptodiazacycloheptane nickel complex, (bme-dach)Ni, serve as precursors to two N(2)-, N'-/ S- complexes where N(2) = diazacycloheptane, N' = imidazole and S = thiolate. As rare examples of nickel complexes containing a mixed thiolate/imidazole ligand set, these complexes are characterized by X-ray diffraction, UV/vis, and variable temperature (1)H NMR spectroscopies, and electrochemistry. Density functional theory computations relate the orientation of the imidazole with respect to the N(2)N'SNi square plane to the VT NMR observed fluxionality and activation parameters. The superoxide dismutase activity of the imidazole complexes was investigated by the nitroblue tetrazolium assay.


Assuntos
Imidazóis/química , Níquel/química , Compostos de Nitrogênio/química , Proteínas Repressoras/metabolismo , Compostos de Enxofre/química , Superóxido Dismutase/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Compostos de Nitrogênio/metabolismo , Especificidade por Substrato , Compostos de Sulfidrila/química , Compostos de Enxofre/metabolismo
5.
Dalton Trans ; (45): 6401-8, 2008 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-19002326

RESUMO

The nature of the complexes formed in aqueous solution between either Pd(en)Cl2 or [Pd(en)(H2O)2](NO3)2 and 1,5-naphthyridine (1,5-NAP), where en is ethylenediamine, have been investigated by 1-D and 2-D (1)H NMR spectroscopy and potentiometric titration. Above pH 5.0, two major complexes have been identified with the stoichiometries of 2:1 and 1:1 (M:L ratio) as well as small amounts of a 1:2 complex and/or oligomer. The 2:1 complex consisted of a Pd(en)2+ moiety symmetrically bonded to each of the nitrogen atoms of the 1,5-NAP, as indicated by the presence of just three 1H NMR resonances in the aromatic region. The 1:1 complex had six resonances as a result of only one 1,5-NAP nitrogen atom being bonded to a Pd(en)2+ group. At pH<5, the uncomplexed nitrogen of the 1:1 and other singly bonded 1,5-NAP species became protonated and resulted in the formation of a large number of complexes. Job's method plots at pH 6 showed that the 1:1 complex is stable over a large concentration range. Above pH approximately 6 the 1:1 complex can dimerize via deprotonation of a water ligand on the Pd(en)2+ to form an hydoxo-bridged or oxo-bridged species. Evidence for this was observed in the upfield shifts of the resonances as the pH increased. The species distribution curve from potentiometric titrations and the NMR data were in good agreement at concentrations of 1-4 mM. NOESY data indicated that free 1,5-NAP ligand was exchanging with that in the 1:1 complex. In order to interpret the en region of the 1H NMR spectra, the spectra of [Pd(en)(H2O)2](NO3)2 in D2O at various pD were obtained.


Assuntos
Naftiridinas/química , Paládio/química , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Indicadores e Reagentes , Ligantes , Espectroscopia de Ressonância Magnética , Platina/química , Potenciometria , Soluções , Espectrometria de Massas por Ionização por Electrospray
6.
Inorg Chem ; 46(18): 7536-44, 2007 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-17685511

RESUMO

The dianionic NiN2S2 complex, Ni(ema)2-, ema=N,N'-ethylenebis-2-mercaptoacetamide, known as a reasonable model of the tripeptide complex Ni(CGC)2- (C=cysteine; G=glycine) with respect to the two carboxyamido nitrogens and cis-dithiolates in a (N2S2)4- ligand scaffold as found in acetyl CoA synthase, has been explored for S-based reactivity toward oxygenation and alkylation. The isolation and structural characterization of a sulfinato species, [Et4N]2[Ni(ema).O2], prepared through a unique direct reaction of molecular O2 with crystalline [Et4N]2[Ni(ema)] is described. Reaction of [Et4N]2[Ni(ema)] with Br(CH2)3Br yields a neutral N2S2 macrocyclic complex shown by DFT computations and electrostatic-potential mapping to be opposite in electron distribution from the neutral NiN2S2 complexes in which the anionic charge is localized on sulfur.


Assuntos
Compostos Organometálicos/química , Enxofre/química , Acetamidas/química , Ânions/química , Simulação por Computador , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica , Etilenos/química , Modelos Moleculares , Conformação Molecular , Níquel/química , Oxigênio/química , Compostos de Amônio Quaternário/química , Eletricidade Estática , Compostos de Enxofre
7.
Inorg Chem ; 46(23): 9655-60, 2007 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-17949080

RESUMO

S K-edge XAS for a low-spin NiII-thiolate complex shows a 0.2 eV shift to higher pre-edge energy but no change in Ni-S bond covalency upon H-bonding. This is different from the H-bonding effect we observed in high-spin FeIII-thiolate complexes where there is a significant decrease in Fe-S bond covalency but no change in energy due to H-bonding (Dey, A.; Okamura, T.-A.; Ueyama, N.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc. 2005, 127, 12046-12053). These differences were analyzed using DFT calculations, and the results indicate that two different types of H-bonding interactions are possible in metal-thiolate systems. In the high-spin FeIII-thiolate case, the H-bonding involves a thiolate donor orbital which is also involved in bonding with the metal (active), while in the low-spin NiII-thiolate, the orbital involved in H-bonding is nonbonding with respect to the M-S bonding (passive). The contributions of active and passive H-bonds to the reduction potential and Lewis acid properties of a metal center are evaluated.


Assuntos
Níquel/química , Compostos de Sulfidrila/química , Ligação de Hidrogênio , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA