Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 164(3): 353-64, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26824653

RESUMO

More than one-half billion people are obese, and despite progress in genetic research, much of the heritability of obesity remains enigmatic. Here, we identify a Trim28-dependent network capable of triggering obesity in a non-Mendelian, "on/off" manner. Trim28(+/D9) mutant mice exhibit a bi-modal body-weight distribution, with isogenic animals randomly emerging as either normal or obese and few intermediates. We find that the obese-"on" state is characterized by reduced expression of an imprinted gene network including Nnat, Peg3, Cdkn1c, and Plagl1 and that independent targeting of these alleles recapitulates the stochastic bi-stable disease phenotype. Adipose tissue transcriptome analyses in children indicate that humans too cluster into distinct sub-populations, stratifying according to Trim28 expression, transcriptome organization, and obesity-associated imprinted gene dysregulation. These data provide evidence of discrete polyphenism in mouse and man and thus carry important implications for complex trait genetics, evolution, and medicine.


Assuntos
Epigênese Genética , Haploinsuficiência , Proteínas Nucleares/genética , Obesidade/genética , Proteínas Repressoras/genética , Magreza/genética , Adolescente , Animais , Índice de Massa Corporal , Criança , Pré-Escolar , Humanos , Camundongos , Inquéritos Nutricionais , Polimorfismo Genético , Proteína 28 com Motivo Tripartido
2.
Immunity ; 53(5): 934-951.e9, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33159854

RESUMO

Inflammatory signaling is required for hematopoietic stem and progenitor cell (HSPC) development. Here, we studied the involvement of RIG-I-like receptors (RLRs) in HSPC formation. Rig-I or Mda5 deficiency impaired, while Lgp2 deficiency enhanced, HSPC emergence in zebrafish embryos. Rig-I or Mda5 deficiency reduced HSPC numbers by inhibiting inflammatory signals that were in turn enhanced in Lgp2 deficient embryos. Simultaneous reduction of Lgp2 and either Rig-I or Mda5 rescued inflammatory signals and HSPC numbers. Modulating the expression of the signaling mediator Traf6 in RLR deficient embryos restored HSPC numbers. Repetitive element transcripts could be detected in hemogenic endothelial cells and HSPCs, suggesting a role as RLR ligands. Indeed, ectopic expression of repetitive elements enhanced HSPC formation in wild-type, but not in Rig-I or Mda5 deficient embryos. Manipulation of RLR expression in mouse fetal liver HSPCs indicated functional conservation among species. Thus, repetitive elements transcribed during development drive RLR-mediated inflammatory signals that regulate HSPC formation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/metabolismo , Sequências Repetitivas de Ácido Nucleico , Transdução de Sinais , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Biomarcadores , Montagem e Desmontagem da Cromatina , Elementos de DNA Transponíveis , Suscetibilidade a Doenças , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Imunidade Inata , Imuno-Histoquímica , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , RNA Helicases/deficiência , RNA Helicases/genética , Proteínas de Ligação a RNA/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Ácido Valproico/farmacologia , Peixe-Zebra
3.
Nature ; 610(7932): 555-561, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36171294

RESUMO

CD4+ T cell differentiation requires metabolic reprogramming to fulfil the bioenergetic demands of proliferation and effector function, and enforce specific transcriptional programmes1-3. Mitochondrial membrane dynamics sustains mitochondrial processes4, including respiration and tricarboxylic acid (TCA) cycle metabolism5, but whether mitochondrial membrane remodelling orchestrates CD4+ T cell differentiation remains unclear. Here we show that unlike other CD4+ T cell subsets, T helper 17 (TH17) cells have fused mitochondria with tight cristae. T cell-specific deletion of optic atrophy 1 (OPA1), which regulates inner mitochondrial membrane fusion and cristae morphology6, revealed that TH17 cells require OPA1 for its control of the TCA cycle, rather than respiration. OPA1 deletion amplifies glutamine oxidation, leading to impaired NADH/NAD+ balance and accumulation of TCA cycle metabolites and 2-hydroxyglutarate-a metabolite that influences the epigenetic landscape5,7. Our multi-omics approach revealed that the serine/threonine kinase liver-associated kinase B1 (LKB1) couples mitochondrial function to cytokine expression in TH17 cells by regulating TCA cycle metabolism and transcriptional remodelling. Mitochondrial membrane disruption activates LKB1, which restrains IL-17 expression. LKB1 deletion restores IL-17 expression in TH17 cells with disrupted mitochondrial membranes, rectifying aberrant TCA cycle glutamine flux, balancing NADH/NAD+ and preventing 2-hydroxyglutarate production from the promiscuous activity of the serine biosynthesis enzyme phosphoglycerate dehydrogenase (PHGDH). These findings identify OPA1 as a major determinant of TH17 cell function, and uncover LKB1 as a sensor linking mitochondrial cues to effector programmes in TH17 cells.


Assuntos
Proteínas Quinases Ativadas por AMP , Mitocôndrias , Células Th17 , Glutamina/metabolismo , Interleucina-17/metabolismo , Mitocôndrias/metabolismo , NAD/metabolismo , Fosfoglicerato Desidrogenase/metabolismo , Serina/biossíntese , Serina/metabolismo , Células Th17/citologia , Células Th17/imunologia , Células Th17/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ciclo do Ácido Cítrico , GTP Fosfo-Hidrolases/deficiência , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
4.
Cell ; 150(5): 948-60, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22939622

RESUMO

Heterochromatin serves important functions, protecting genome integrity and stabilizing gene expression programs. Although the Suv39h methyltransferases (KMTs) are known to ensure pericentric H3K9me3 methylation, the mechanisms that initiate and maintain mammalian heterochromatin organization remain elusive. We developed a biochemical assay and used in vivo analyses in mouse embryonic fibroblasts to identify Prdm3 and Prdm16 as redundant H3K9me1-specific KMTs that direct cytoplasmic H3K9me1 methylation. The H3K9me1 is converted in the nucleus to H3K9me3 by the Suv39h enzymes to reinforce heterochromatin. Simultaneous depletion of Prdm3 and Prdm16 abrogates H3K9me1 methylation, prevents Suv39h-dependent H3K9me3 trimethylation, and derepresses major satellite transcription. Most strikingly, DNA-FISH and electron microscopy reveal that combined impairment of Prdm3 and Prdm16 results in disintegration of heterochromatic foci and disruption of the nuclear lamina. Our data identify Prdm3 and Prdm16 as H3K9me1 methyltransferases and expose a functional framework in which anchoring to the nuclear periphery helps maintain the integrity of mammalian heterochromatin.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Heterocromatina , Histona-Lisina N-Metiltransferase/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Células HeLa , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Proteína do Locus do Complexo MDS1 e EVI1 , Camundongos , Lâmina Nuclear/metabolismo , Proto-Oncogenes , Fatores de Transcrição/genética
5.
Annu Rev Cell Dev Biol ; 26: 471-501, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19575672

RESUMO

Genetic screens in Drosophila have been instrumental in distinguishing approximately 390 loci involved in position effect variegation and heterochromatin stabilization. Most of the identified genes [so-called Su(var) and E(var) genes] are also conserved in mammals, where more than 50 of their gene products are known to localize to constitutive heterochromatin. From these proteins, approximately 12 core heterochromatin components can be inferred. In addition, there are approximately 30 additional Su(var) and 10 E(var) factors that can, under distinct developmental options, interchange with constitutive heterochromatin and participate in the partitioning of the genome into repressed and active chromatin domains. A significant fraction of the Su(var) and E(var) factors are enzymes that respond to environmental and metabolic signals, thereby allowing both the variation and propagation of epigenetic states to a dynamic chromatin template. Moreover, the misregulation of human SU(VAR) and E(VAR) function can advance cancer and many other human diseases including more complex disorders. As such, mammalian Su(var) and E(var) genes and their products provide a rich source of novel targets for diagnosis of and pharmaceutical intervention in many human diseases.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Heterocromatina , Humanos , Metiltransferases/genética , Proteínas Repressoras/genética
6.
Mol Cell ; 61(2): 260-73, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26725008

RESUMO

DNA replication is temporally and spatially organized in all eukaryotes, yet the molecular control and biological function of the replication-timing program are unclear. Rif1 is required for normal genome-wide regulation of replication timing, but its molecular function is poorly understood. Here we show that in mouse embryonic stem cells, Rif1 coats late-replicating domains and, with Lamin B1, identifies most of the late-replicating genome. Rif1 is an essential determinant of replication timing of non-Lamin B1-bound late domains. We further demonstrate that Rif1 defines and restricts the interactions between replication-timing domains during the G1 phase, thereby revealing a function of Rif1 as organizer of nuclear architecture. Rif1 loss affects both number and replication-timing specificity of the interactions between replication-timing domains. In addition, during the S phase, Rif1 ensures that replication of interacting domains is temporally coordinated. In summary, our study identifies Rif1 as the molecular link between nuclear architecture and replication-timing establishment in mammals.


Assuntos
Núcleo Celular/metabolismo , Período de Replicação do DNA , Proteínas de Ligação a Telômeros/metabolismo , Animais , Proliferação de Células , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Ilhas de CpG/genética , Fase G1 , Deleção de Genes , Regulação da Expressão Gênica , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Ligação a Telômeros/química , Sítio de Iniciação de Transcrição
7.
Nucleic Acids Res ; 49(10): 5568-5587, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33999208

RESUMO

Heterochromatin has essential functions in maintaining chromosome structure, in protecting genome integrity and in stabilizing gene expression programs. Heterochromatin is often nucleated by underlying DNA repeat sequences, such as major satellite repeats (MSR) and long interspersed nuclear elements (LINE). In order to establish heterochromatin, MSR and LINE elements need to be transcriptionally competent and generate non-coding repeat RNA that remain chromatin associated. We explored whether these heterochromatic RNA, similar to DNA and histones, may be methylated, particularly for 5-methylcytosine (5mC) or methyl-6-adenosine (m6A). Our analysis in mouse ES cells identifies only background level of 5mC but significant enrichment for m6A on heterochromatic RNA. Moreover, MSR transcripts are a novel target for m6A RNA modification, and their m6A RNA enrichment is decreased in ES cells that are mutant for Mettl3 or Mettl14, which encode components of a central RNA methyltransferase complex. Importantly, MSR transcripts that are partially deficient in m6A RNA methylation display impaired chromatin association and have a reduced potential to form RNA:DNA hybrids. We propose that m6A modification of MSR RNA will enhance the functions of MSR repeat transcripts to stabilize mouse heterochromatin.


Assuntos
DNA/metabolismo , Heterocromatina , RNA/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Metilação , Camundongos , Células-Tronco Embrionárias Murinas , Sequências de Repetição em Tandem
8.
Proc Natl Acad Sci U S A ; 117(25): 14251-14258, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32513732

RESUMO

Nearly 50% of mouse and human genomes are composed of repetitive sequences. Transcription of these sequences is tightly controlled during development to prevent genomic instability, inappropriate gene activation and other maladaptive processes. Here, we demonstrate an integral role for H1 linker histones in silencing repetitive elements in mouse embryonic stem cells. Strong H1 depletion causes a profound de-repression of several classes of repetitive sequences, including major satellite, LINE-1, and ERV. Activation of repetitive sequence transcription is accompanied by decreased H3K9 trimethylation of repetitive sequence chromatin. H1 linker histones interact directly with Suv39h1, Suv39h2, and SETDB1, the histone methyltransferases responsible for H3K9 trimethylation of chromatin within these regions, and stimulate their activity toward chromatin in vitro. However, we also implicate chromatin compaction mediated by H1 as an additional, dominant repressive mechanism for silencing of repetitive major satellite sequences. Our findings elucidate two distinct, H1-mediated pathways for silencing heterochromatin.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Sequências Repetitivas de Ácido Nucleico/fisiologia , Animais , Epigenômica , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Metilação , Metiltransferases/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Repressoras/metabolismo
9.
Nat Rev Genet ; 17(8): 487-500, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27346641

RESUMO

Over the past 20 years, breakthrough discoveries of chromatin-modifying enzymes and associated mechanisms that alter chromatin in response to physiological or pathological signals have transformed our knowledge of epigenetics from a collection of curious biological phenomena to a functionally dissected research field. Here, we provide a personal perspective on the development of epigenetics, from its historical origins to what we define as 'the modern era of epigenetic research'. We primarily highlight key molecular mechanisms of and conceptual advances in epigenetic control that have changed our understanding of normal and perturbed development.


Assuntos
Cromatina/genética , Metilação de DNA , Epigênese Genética/genética , Animais , Humanos
10.
Mol Cell ; 55(2): 277-90, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24981170

RESUMO

Heterochromatin is required to restrict aberrant expression of retrotransposons, but it remains poorly defined due to the underlying repeat-rich sequences. We dissected Suv39h-dependent histone H3 lysine 9 trimethylation (H3K9me3) by genome-wide ChIP sequencing in mouse embryonic stem cells (ESCs). Refined bioinformatic analyses of repeat subfamilies indicated selective accumulation of Suv39h-dependent H3K9me3 at interspersed repetitive elements that cover ∼5% of the ESC epigenome. The majority of the ∼8,150 intact long interspersed nuclear elements (LINEs) and endogenous retroviruses (ERVs), but only a minor fraction of the >1.8 million degenerate and truncated LINEs/ERVs, are enriched for Suv39h-dependent H3K9me3. Transcriptional repression of intact LINEs and ERVs is differentially regulated by Suv39h and other chromatin modifiers in ESCs but governed by DNA methylation in committed cells. These data provide a function for Suv39h-dependent H3K9me3 chromatin to specifically repress intact LINE elements in the ESC epigenome.


Assuntos
Células-Tronco Embrionárias/enzimologia , Retrovirus Endógenos/genética , Inativação Gênica , Histona-Lisina N-Metiltransferase/fisiologia , Histonas/metabolismo , Elementos Nucleotídeos Longos e Dispersos , Metiltransferases/fisiologia , Proteínas Repressoras/fisiologia , Animais , Células Cultivadas , Metilação de DNA , Camundongos , Processamento de Proteína Pós-Traducional
11.
Chromosoma ; 129(1): 83-98, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31950239

RESUMO

Su(var) mutations define epigenetic factors controlling heterochromatin formation and gene silencing in Drosophila. Here, we identify SU(VAR)2-1 as a novel chromatin regulator that directs global histone deacetylation during the transition of cleavage chromatin into somatic blastoderm chromatin in early embryogenesis. SU(VAR)2-1 is heterochromatin-associated in blastoderm nuclei but not in later stages of development. In larval polytene chromosomes, SU(VAR)2-1 is a band-specific protein. SU(VAR)2-1 directs global histone deacetylation by recruiting the histone deacetylase RPD3. In Su(var)2-1 mutants H3K9, H3K27, H4K8 and H4K16 acetylation shows elevated levels genome-wide and heterochromatin displays aberrant histone hyper-acetylation. Whereas H3K9me2- and HP1a-binding appears unaltered, the heterochromatin-specific H3K9me2S10ph composite mark is impaired in heterochromatic chromocenters of larval salivary polytene chromosomes. SU(VAR)2-1 contains an NRF1/EWG domain and a C2HC zinc-finger motif. Our study identifies SU(VAR)2-1 as a dosage-dependent, heterochromatin-initiating SU(VAR) factor, where the SU(VAR)2-1-mediated control of genome-wide histone deacetylation after cleavage and before mid-blastula transition (pre-MBT) is required to enable heterochromatin formation.


Assuntos
Blástula/metabolismo , Drosophila/genética , Drosophila/metabolismo , Desenvolvimento Embrionário/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Animais , Blástula/embriologia , Sistemas CRISPR-Cas , Centrossomo , Montagem e Desmontagem da Cromatina , Clonagem Molecular , Drosophila/classificação , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Estudo de Associação Genômica Ampla , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino , Mutação , Filogenia
12.
Mol Cell ; 52(5): 746-57, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24239292

RESUMO

Although heterochromatin is enriched with repressive traits, it is also actively transcribed, giving rise to large amounts of noncoding RNAs. Although these RNAs are responsible for the formation and maintenance of heterochromatin, little is known about how their transcription is regulated. Here, we show that the Snail1 transcription factor represses mouse pericentromeric transcription, acting through the H3K4 deaminase LOXL2. Since Snail1 plays a key role in the epithelial-to-mesenchymal transition (EMT), we analyzed the regulation of heterochromatin transcription in this process. At the onset of EMT, one of the major structural heterochromatin proteins, HP1α, is transiently released from heterochromatin foci in a Snail1/LOXL2-dependent manner, concomitantly with a downregulation of major satellite transcription. Moreover, preventing the downregulation of major satellite transcripts compromised the migratory and invasive behavior of mesenchymal cells. We propose that Snail1 regulates heterochromatin transcription through LOXL2, thus creating the favorable transcriptional state necessary for completing EMT.


Assuntos
Aminoácido Oxirredutases/genética , Transição Epitelial-Mesenquimal/genética , Heterocromatina/genética , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Regulação para Baixo , Células HEK293 , Histonas/genética , Humanos , Mesoderma/metabolismo , Camundongos , Fatores de Transcrição da Família Snail
13.
Eur Heart J ; 40(4): 383-391, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-29077881

RESUMO

Aims: Accumulation of reactive oxygen species (ROS) promotes vascular disease in obesity, but the underlying molecular mechanisms remain poorly understood. The adaptor p66Shc is emerging as a key molecule responsible for ROS generation and vascular damage. This study investigates whether epigenetic regulation of p66Shc contributes to obesity-related vascular disease. Methods and results: ROS-driven endothelial dysfunction was observed in visceral fat arteries (VFAs) isolated from obese subjects when compared with normal weight controls. Gene profiling of chromatin-modifying enzymes in VFA revealed a significant dysregulation of methyltransferase SUV39H1 (fold change, -6.9, P < 0.01), demethylase JMJD2C (fold change, 3.2, P < 0.01), and acetyltransferase SRC-1 (fold change, 5.8, P < 0.01) in obese vs. control VFA. These changes were associated with reduced di-(H3K9me2) and trimethylation (H3K9me3) as well as acetylation (H3K9ac) of histone 3 lysine 9 (H3K9) on p66Shc promoter. Reprogramming SUV39H1, JMJD2C, and SRC-1 in isolated endothelial cells as well as in aortas from obese mice (LepOb/Ob) suppressed p66Shc-derived ROS, restored nitric oxide levels, and rescued endothelial dysfunction. Consistently, in vivo editing of chromatin remodellers blunted obesity-related vascular p66Shc expression. We show that SUV39H1 is the upstream effector orchestrating JMJD2C/SRC-1 recruitment to p66Shc promoter. Indeed, SUV39H1 overexpression in obese mice erased H3K9-related changes on p66Shc promoter, while SUV39H1 genetic deletion in lean mice recapitulated obesity-induced H3K9 remodelling and p66Shc transcription. Conclusion: These results uncover a novel epigenetic mechanism underlying endothelial dysfunction in obesity. Targeting SUV39H1 may attenuate oxidative transcriptional programmes and thus prevent vascular disease in obese individuals.


Assuntos
Regulação da Expressão Gênica , Histona Desmetilases com o Domínio Jumonji/genética , Metiltransferases/genética , Coativador 1 de Receptor Nuclear/genética , Obesidade/genética , Estresse Oxidativo/fisiologia , Proteínas Repressoras/genética , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Feminino , Histona-Lisina N-Metiltransferase , Humanos , Histona Desmetilases com o Domínio Jumonji/biossíntese , Masculino , Metiltransferases/biossíntese , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Pessoa de Meia-Idade , Coativador 1 de Receptor Nuclear/biossíntese , Obesidade/metabolismo , Obesidade/patologia , RNA/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/biossíntese , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/biossíntese , Transcrição Gênica , Vasodilatação
14.
EMBO Rep ; 18(6): 914-928, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28487353

RESUMO

ATRX is a chromatin remodelling factor found at a wide range of tandemly repeated sequences including telomeres (TTAGGG)n ATRX mutations are found in nearly all tumours that maintain their telomeres via the alternative lengthening of telomere (ALT) pathway, and ATRX is known to suppress this pathway. Here, we show that recruitment of ATRX to telomeric repeats depends on repeat number, orientation and, critically, on repeat transcription. Importantly, the transcribed telomeric repeats form RNA-DNA hybrids (R-loops) whose abundance correlates with the recruitment of ATRX Here, we show loss of ATRX is also associated with increased R-loop formation. Our data suggest that the presence of ATRX at telomeres may have a central role in suppressing deleterious DNA secondary structures that form at transcribed telomeric repeats, and this may account for the increased DNA damage, stalling of replication and homology-directed repair previously observed upon loss of ATRX function.


Assuntos
Montagem e Desmontagem da Cromatina , DNA/genética , RNA/genética , Telômero/genética , Telômero/metabolismo , Proteína Nuclear Ligada ao X/metabolismo , Cromatina , DNA/química , Dano ao DNA , Replicação do DNA , Quadruplex G , Humanos , Homeostase do Telômero/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteína Nuclear Ligada ao X/deficiência , Proteína Nuclear Ligada ao X/genética
15.
Hepatology ; 65(6): 1904-1919, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28244120

RESUMO

Uncontrolled inflammatory response highlights the central theme of nonalcoholic steatohepatitis (NASH), a growing global pandemic. Hepatocytes and macrophages represent two major sources of hepatic inflammation during NASH pathogenesis, contributing to excessive synthesis of proinflammatory mediators. The epigenetic mechanism that accounts for the activation of hepatocytes and macrophages in this process remains obscure. Here, we report that compared to wild-type littermates, mice with a deficiency in the histone H3K9 methyltransferase suppressor of variegation 39 homolog 2 (Suv39h2, knockout) exhibited a less severe form of NASH induced by feeding with a high-fat, high-carbohydrate diet. Pro-NASH stimuli increased Suv39h2 expression in cell culture, in mice, and in human livers. In hepatocytes, Suv39h2 bound to the Sirt1 gene promoter and repressed Sirt1 transcription. Suv39h2 deficiency normalized Sirt1 expression, allowing nuclear factor kappa B/p65 to become hypoacetylated and thus dampening nuclear factor kappa B-dependent transcription of proinflammatory mediators. In macrophages, Suv39h2-mediated repression of peroxisome proliferator-activated receptor gamma transcription favored a proinflammatory M1 phenotype over an anti-inflammatory M2 phenotype, thereby elevating hepatic inflammation. CONCLUSION: Suv39h2 plays a pivotal role in the regulation of inflammatory response in hepatocytes and macrophages, contributing to NASH pathogenesis. (Hepatology 2017;65:1904-1919).


Assuntos
Dieta Hiperlipídica , Histona-Lisina N-Metiltransferase/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Sirtuína 1/metabolismo , Análise de Variância , Animais , Biomarcadores/metabolismo , Biópsia por Agulha , Western Blotting , Carcinoma Hepatocelular/parasitologia , Carcinoma Hepatocelular/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Citometria de Fluxo , Hepatócitos/metabolismo , Histona Metiltransferases , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real/métodos , Valores de Referência
16.
Genes Dev ; 23(22): 2625-38, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19933152

RESUMO

Satb1 and the closely related Satb2 proteins regulate gene expression and higher-order chromatin structure of multigene clusters in vivo. In examining the role of Satb proteins in murine embryonic stem (ES) cells, we find that Satb1(-/-) cells display an impaired differentiation potential and augmented expression of the pluripotency determinants Nanog, Klf4, and Tbx3. Metastable states of self-renewal and differentiation competence have been attributed to heterogeneity of ES cells in the expression of Nanog. Satb1(-/-) cultures have a higher proportion of Nanog(high) cells, and an increased potential to reprogram human B lymphocytes in cell fusion experiments. Moreover, Satb1-deficient ES cells show an increased expression of Satb2, and we find that forced Satb2 expression in wild-type ES cells antagonizes differentiation-associated silencing of Nanog and enhances the induction of NANOG in cell fusions with human B lymphocytes. An antagonistic function of Satb1 and Satb2 is also supported by the almost normal differentiation potential of Satb1(-/-)Satb2(-/-) ES cells. Taken together with the finding that both Satb1 and Satb2 bind the Nanog locus in vivo, our data suggest that the balance of Satb1 and Satb2 contributes to the plasticity of Nanog expression and ES cell pluripotency.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linfócitos B/metabolismo , Linhagem Celular , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Proteína Homeobox Nanog
17.
Nat Genet ; 39(2): 237-42, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17211412

RESUMO

Adult cancers may derive from stem or early progenitor cells. Epigenetic modulation of gene expression is essential for normal function of these early cells but is highly abnormal in cancers, which often show aberrant promoter CpG island hypermethylation and transcriptional silencing of tumor suppressor genes and pro-differentiation factors. We find that for such genes, both normal and malignant embryonic cells generally lack the hypermethylation of DNA found in adult cancers. In embryonic stem cells, these genes are held in a 'transcription-ready' state mediated by a 'bivalent' promoter chromatin pattern consisting of the repressive mark, histone H3 methylated at Lys27 (H3K27) by Polycomb group proteins, plus the active mark, methylated H3K4. However, embryonic carcinoma cells add two key repressive marks, dimethylated H3K9 and trimethylated H3K9, both associated with DNA hypermethylation in adult cancers. We hypothesize that cell chromatin patterns and transient silencing of these important regulatory genes in stem or progenitor cells may leave these genes vulnerable to aberrant DNA hypermethylation and heritable gene silencing during tumor initiation and progression.


Assuntos
Cromatina/metabolismo , Metilação de DNA , Genes Supressores de Tumor , Células-Tronco/metabolismo , Adulto , Proliferação de Células , Células-Tronco Embrionárias/metabolismo , Inativação Gênica , Histonas/metabolismo , Humanos , Proteínas do Grupo Polycomb , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Células Tumorais Cultivadas
18.
Cancer Cell ; 11(6): 513-25, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17560333

RESUMO

Epigenetic changes are common alterations in cancer cells. Here, we have investigated the role of Polycomb group proteins in the establishment and maintenance of the aberrant silencing of tumor suppressor genes during transformation induced by the leukemia-associated PML-RARalpha fusion protein. We show that in leukemic cells knockdown of SUZ12, a key component of Polycomb repressive complex 2 (PRC2), reverts not only histone modification but also induces DNA demethylation of PML-RARalpha target genes. This results in promoter reactivation and granulocytic differentiation. Importantly, the epigenetic alterations caused by PML-RARalpha can be reverted by retinoic acid treatment of primary blasts from leukemic patients. Our results demonstrate that the direct targeting of Polycomb group proteins by an oncogene plays a key role during carcinogenesis.


Assuntos
Proteínas de Transporte/fisiologia , Leucemia Promielocítica Aguda/metabolismo , Proteínas Nucleares/fisiologia , Proteínas de Fusão Oncogênica/fisiologia , Proteínas Repressoras/metabolismo , Diferenciação Celular , Metilação de DNA , Epigênese Genética , Inativação Gênica , Granulócitos/fisiologia , Histonas , Humanos , Proteínas de Neoplasias , Proteínas de Fusão Oncogênica/genética , Complexo Repressor Polycomb 2 , Proteínas do Grupo Polycomb , Fatores de Transcrição , Tretinoína/farmacologia , Células Tumorais Cultivadas
19.
PLoS Genet ; 8(6): e1002750, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22761581

RESUMO

The enzymatic control of the setting and maintenance of symmetric and non-symmetric DNA methylation patterns in a particular genome context is not well understood. Here, we describe a comprehensive analysis of DNA methylation patterns generated by high resolution sequencing of hairpin-bisulfite amplicons of selected single copy genes and repetitive elements (LINE1, B1, IAP-LTR-retrotransposons, and major satellites). The analysis unambiguously identifies a substantial amount of regional incomplete methylation maintenance, i.e. hemimethylated CpG positions, with variant degrees among cell types. Moreover, non-CpG cytosine methylation is confined to ESCs and exclusively catalysed by Dnmt3a and Dnmt3b. This sequence position-, cell type-, and region-dependent non-CpG methylation is strongly linked to neighboring CpG methylation and requires the presence of Dnmt3L. The generation of a comprehensive data set of 146,000 CpG dyads was used to apply and develop parameter estimated hidden Markov models (HMM) to calculate the relative contribution of DNA methyltransferases (Dnmts) for de novo and maintenance DNA methylation. The comparative modelling included wild-type ESCs and mutant ESCs deficient for Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3a/3b, respectively. The HMM analysis identifies a considerable de novo methylation activity for Dnmt1 at certain repetitive elements and single copy sequences. Dnmt3a and Dnmt3b contribute de novo function. However, both enzymes are also essential to maintain symmetrical CpG methylation at distinct repetitive and single copy sequences in ESCs.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação , Sequências Repetitivas de Ácido Nucleico/genética , Animais , Linhagem Celular , Ilhas de CpG , Citosina/metabolismo , Metilação de DNA , DNA Metiltransferase 3A , Células-Tronco Embrionárias/citologia , Epigênese Genética , Camundongos , DNA Metiltransferase 3B
20.
EMBO J ; 29(15): 2538-52, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20588255

RESUMO

MDM2 is a key regulator of the p53 tumor suppressor acting primarily as an E3 ubiquitin ligase to promote its degradation. MDM2 also inhibits p53 transcriptional activity by recruiting histone deacetylase and corepressors to p53. Here, we show that immunopurified MDM2 complexes have significant histone H3-K9 methyltransferase activity. The histone methyltransferases SUV39H1 and EHMT1 bind specifically to MDM2 but not to its homolog MDMX. MDM2 mediates formation of p53-SUV39H1/EHMT1 complex capable of methylating H3-K9 in vitro and on p53 target promoters in vivo. Furthermore, MDM2 promotes EHMT1-mediated p53 methylation at K373. Knockdown of SUV39H1 and EHMT1 increases p53 activity during stress response without affecting p53 levels, whereas their overexpression inhibits p53 in an MDM2-dependent manner. The p53 activator ARF inhibits SUV39H1 and EHMT1 binding to MDM2 and reduces MDM2-associated methyltransferase activity. These results suggest that MDM2-dependent recruitment of methyltransferases is a novel mechanism of p53 regulation through methylation of both p53 itself and histone H3 at target promoters.


Assuntos
Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Células Cultivadas , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Metilação , Metiltransferases/genética , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/deficiência , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Repressoras/genética , Estresse Fisiológico , Transcrição Gênica , Proteína Supressora de Tumor p53/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA