RESUMO
Miamiensis avidus is a parasitic pathogen that causes the disease scuticociliatosis in teleost fish species. It is a ciliate and a free-living marine protozoan belonging to the order Philasterida, subclass Scuticociliatida, class Oligohymenophorea, and phylum Ciliophora. The complete mt-genome of M. avidus was linear and 38,695 bp in length with 47 genes, including 40 protein-coding genes, two ribosomal RNA (rRNA) genes, and five transfer RNA (tRNA) genes. Of these, 20 genes typically belong to the clusters of orthologous groups, playing roles in energy production and conversion, translation, ribosomal structure and biogenesis, and defense mechanisms. This is the first report of sequencing and characterization of the mt-genome of M. avidus, which was observed to be linear and possessing the typical ciliate mitochondrial genome organization and phylogenetic relationships. Remarkable differences were observed between M. avidus and other ciliates in the mitochondrially encoded rRNAs, extensive gene loss in ribosomal genes and tRNAs, terminal repeat sequences, and stop codon usage. A comparative and phylogenetic analysis of M. avidus and Uronema marinum of the order Hymenostomatida, which is most closely related to the order Philasterida, signified the promise of the mitogenome data of M. avidus as a valuable genetic marker in species detection and taxonomic research. The present study has potential applications in epidemiological studies and host-parasite interaction investigations facilitating disease control.
Assuntos
Infecções por Cilióforos , Doenças dos Peixes , Genoma Mitocondrial , Oligoimenóforos , Animais , Infecções por Cilióforos/genética , Infecções por Cilióforos/parasitologia , Filogenia , Doenças dos Peixes/genética , Doenças dos Peixes/parasitologia , Oligoimenóforos/genéticaRESUMO
BACKGROUND: Parasite peptidases have been actively studied as vaccine candidates or drug targets for prevention or treatment of parasitic diseases because of their important roles for survival and/or invasion in the host. Like other parasites, the facultative histophagous ciliate Miamiensis avidus would possess peptidases that are closely associated with the invasion into the host tissue and survival in the host. RESULTS: The 17 genes encoding peptidases, including seven cathepsin-like cysteine peptidases, four serine carboxypeptidases, a eukaryotic aspartyl protease family protein, an ATP-dependent metalloprotease FtsH family protein, three leishmanolysin family proteins and a peptidase family M49 protein were identified from a Miamiensis avidus cDNA library by BLAST X search. Expression of genes encoding two cysteine peptidases, three leishmanolysin-like peptidases and a peptidase family M49 protein was up-regulated in the cell-fed ciliates compared to the starved ciliates. Especially, one cysteine peptidase (MaPro 4) and one leishmanolysin-like peptidase (MaPro 14) were transcribed more than 100-folds in the cell-fed ciliates. CONCLUSIONS: The genetic information and transcriptional characteristics of the peptidases in the present results would be helpful to elucidate the role of peptidases in the invasion of scuticociliates into their hosts.
Assuntos
Infecções por Cilióforos/veterinária , Cilióforos/genética , Animais , Infecções por Cilióforos/parasitologia , Clonagem Molecular , DNA de Protozoário/genética , Doenças dos Peixes/parasitologia , Linguado/parasitologia , Perfilação da Expressão Gênica/veterinária , Genes de Protozoários/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Salmão/parasitologia , Alinhamento de SequênciaRESUMO
Intestinal giant-cystic disease (IGCD) of the Israel carp (Cyprinus carpio nudus) has been recognized as one of the most serious diseases afflicting inland farmed fish in the Republic of Korea, and Thelohanellus kitauei has been identified as the causative agent of the disease. Until now, studies concerning IGCD caused by T. kitauei in the Israel carp have been limited to morphological and histopathological examinations. However, these types of diagnostic examinations are relatively time-consuming, and the infection frequently cannot be detected in its early stages. In this study, we cloned the full-length 18S rRNA gene of T. kitauei isolated from diseased Israel carps, and carried out molecular identification by comparing the sequence with those of other myxosporeans. Moreover, conventional PCR and real-time quantitative PCR (qPCR) using oligonucleotide primers for the amplification of 18S rRNA gene fragment were established for further use as methods for rapid diagnosis of IGCD. Our results demonstrated that both the conventional PCR and real-time quantitative PCR systems applied herein are effective for rapid detection of T. kitauei spores in fish tissues and environmental water.
Assuntos
Doenças dos Peixes/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Myxozoa/isolamento & purificação , Doenças Parasitárias em Animais/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Medicina Veterinária/métodos , Animais , Carpas , Primers do DNA/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Doenças dos Peixes/parasitologia , Dados de Sequência Molecular , Myxozoa/genética , Doenças Parasitárias em Animais/parasitologia , RNA Ribossômico 18S/genética , República da Coreia , Análise de Sequência de DNA , Fatores de TempoRESUMO
Scuticociliatosis, caused by Miamiensis avidus, is a severe parasitic disease affecting marine organisms, particularly Paralichthys olivaceus. The aim of this study was to assess the antiparasitic potential of ethanolic extracts of Carpesii Fructus (EECF), the dried fruit of Carpesium abrotanoides L., which is used in traditional Chinese medicine, in vitro. We found that 50%, 70%, and 100% EECF induced morphological changes in M. avidus, including reduced motility, cell shrinkage, and lysis. Nearly 100% cell lysis was observed in M. avidus after 2 h of treating with 100% EECF. After 24 h, the survival rates of M. avidus treated with 100%, 70%, and 50% EECF were 10%, 20%, and 30%, respectively. Additionally, the mRNA levels of immune response-related (IL-1ß, IL-8, TNF-α, and CD8-α) and biotransformation-related (CYP1A, CYP1B, CYP3A4, and UGT2B19) genes increased with 70% and 100% EECF treatment and decreased with 50% EECF treatment following pretreatment with concanavalin A. The viability of hirame natural embryo (HINAE) cells was reduced by 50%, 70%, and 100% EECF (100 mg/L) and was between 67 and 80%. The IC50 values of 50%, 70%, 90%, and 100% EECF in HINAE cells were 102.3, 42.93, 39.15, and 38.39 mg/L, respectively. These results indicated that 50% EECF was less toxic to HINAE cells than 70% or 100% EECF, while still exhibiting antiparasitic activity against M. avidus. Therefore, we demonstrated the role of EECF as a natural antiparasitic agent against M. avidus. Our findings suggest that Carpesii Fructus has potential use as an antiparasitic agent in the aquaculture industry.
Assuntos
Antiparasitários/farmacologia , Asteraceae/metabolismo , Doenças dos Peixes , Linguado/parasitologia , Doenças Parasitárias em Animais/tratamento farmacológico , Extratos Vegetais/farmacologia , Animais , Linhagem Celular , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/parasitologia , Imunidade/efeitos dos fármacosRESUMO
A low sulfur fuel oil (LSFO) spill accident occurred in South Korea on December 17, 2019, before the introduction of the International Maritime Organization (IMO) sulfur limit. In this study, chromatograms, percentage weathering plots (PW-plots), and diagnostic ratios (DRs) of LSFOs collected in different areas during in the early spillage were compared for oil spill fingerprint. The source oil was conformed as LSFO according to physical properties and spill oils, like the source oil, show high n-alkanes and low benzo[b]naphto[1,2-d]thiophene (BNT) distribution. In the PW-plots, spill oils exhibited a decreasing trend with the reduction of low-molecular-weight compounds, which were affected by evaporation. The relative difference in the DRs was below 14%, indicating that the source and spill oils matched, excluding the ratios consisting of evaporated compounds. These results showed that spill oils confirmed as LSFO were evaporated during the initial spillage stage, and matched to the source oil.
Assuntos
Óleos Combustíveis , Poluição por Petróleo , Alcanos/análise , Óleos Combustíveis/análise , Poluição por Petróleo/análise , República da Coreia , EnxofreRESUMO
A phosphate starvation-induced acid phosphatase cDNA was cloned from the rice, Oryza sativa. The cDNA encoding O. sativa acid phosphatase (OsACP1) has 1100 bp with an open reading frame of 274 amino acid residues. The deduced amino acid sequence of OsACP1 cDNA showed 53% identity to tomato acid phosphatase and 46-50% identity to several other plant phosphatases. OsACP1 expression was up-regulated in the rice plant and in cell culture in the absence of phosphate (Pi). The induced expression of OsACP1 was a specific response to Pi starvation, and was not affected by the deprivation of other nutrients. OsACP1 expression was responsive to the level of Pi supply, with transcripts of OsACP1 being abundant in Pi-deprived root. The OsACP1 cDNA was expressed as a 30 kDa polypeptide in baculovirus-infected insect Sf9 cells. In addition, the OsACP1 gene was introduced into Arabidopsis via Agrobacterium-mediated transformation. Functional expression of the OsACP1 gene in the transgenic Arabidopsis lines was confirmed by Northern blot and Western blot analyses, as well as phosphatase activity assays. These results suggest that the OsACP1 gene can be used to develop new transgenic dicotyledonous plants able to adapt to Pi-deficient conditions.