Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801875

RESUMO

In this paper, the effect of nano-SiO2 (NS) and MgO on the hydration characteristics and anti-washout resistance of non-dispersible underwater concrete (UWC) was evaluated. A slump flow test, a viscosity test, and setting time measurement were conducted to identify the impacts of NS and MgO on the rheological properties of UWC. The pH and turbidity were measured to investigate the anti-washout performance of UWC mixes. To analyze the hydration characteristics and mechanical properties, hydration heat analysis, a compressive strength test, and thermogravimetric analyses were conducted. The experimental results showed that the fine particles of NS and MgO reduced slump flow, increased viscosity, and enhanced the anti-washout resistance of UWC. In addition, both NS and MgO shortened the initial and final setting times, and the replacement of MgO specimens slightly prolonged the setting time. NS accelerated the peak time and increased the peak temperature, and MgO delayed the hydration process and reduced the temperature due to the formation of brucite. The compressive results showed that NS improved the compressive strength of the UWC, and MgO slightly decreased the strength. The addition of NS also resulted in the formation of extra C-S-H, and the replacement of MgO caused the generation of a hydrotalcite phase.

2.
Materials (Basel) ; 13(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935986

RESUMO

Increasing use of cement in the construction industry is causing an alarming increase in carbon dioxide (CO2) emissions, which is a serious environmental threat, it can be reduced by the addition of supplementary cementitious materials (SCMs). The commonly used SCMs like ground granulated blast furnace slag (GGBS), metakaolin (MK) and fly ash (FA) have been successfully used to replace the cement partially or completely. Polysilicon sludge obtained from the photovoltaic industry is also a type of waste material that can be used as SCM because it has high content of reactive SiO2. This study investigates the effects of replacing cement with polysilicon sludge in concrete. Different concrete specimens were made by replacing varying proportions of cement with polysilicon sludge and their properties, such as, fresh properties, compressive strength, heat release, chloride penetration, freeze/thaw resistance and microstructural investigations were determined. The results demonstrate that the polysilicon sludge can be used effectively to replace cement, and environmental threats associated with its disposal can be reduced.

3.
Materials (Basel) ; 12(14)2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31311089

RESUMO

The main purpose of this work is to study the effect of saturated black tea waste and perlite on controlling the rapid heat of hydration in high-strength cement mortars at early ages. Tea waste and perlite were investigated as internal curing agents in different mixes. Mortar specimens with two different sizes of tea waste and perlite particles with 1 and 3% by volume of cement were added in different mixes to find their effect on early age hydration. The rising interior temperature, setting times, and strength parameters were evaluated. Results showed that the mix specimens that contained 3% tea waste and perlite particles significantly delayed the hydration process by minimizing internal temperature and extended setting times of different specimens. However, their usage had a slightly adverse impact on compressive and flexural strengths. It was observed that the specimens made with coarser particles of tea waste and perlite were more helpful to control early age rapid hydration than the specimens made with finer particles, whereas the specimens made with finer particles had slightly higher strengths than the specimens made with coarser particles. Hence, the coarser particles are recommended to be used in high-strength mortars to mitigate the early age rapid heat of hydration.

4.
Materials (Basel) ; 12(18)2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31492043

RESUMO

This study investigates the potential of light-burnt dolomite (LBD) as a supplementary cementitious material with ground granulated blast furnace slag (GGBFS) and Ordinary Portland cement (OPC). In this work, LBD was substituted for up to 20% of GGBFS in sodium sulfate-activated slag systems. The effects of LBD incorporation on the flow, setting time, compressive and flexural strength development, and drying shrinkage were explored with, X-ray diffraction and thermogravimetric analyses. LBD incorporation resulted in greater strength development of an alkali-activated slag system. The optimum LBD content for strength development was 10%, regardless of ordinary Portland cement content. In addition, LBD decreased the drying shrinkage, accelerated the hydration process, and induced hydrotalcite formation, which can be attributed to the reactive MgO inside LBD.

5.
Materials (Basel) ; 12(17)2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438490

RESUMO

The purpose of this study was to prevent early age autogenous shrinkage in high-strength mortars with saturated tea waste particles. In general, high strength and high performance concretes are made with low water/binder ratios; hence, they are susceptible to shrink at early ages. This shrinkage occurs due to self-desiccation that leads to autogenous shrinkage. To overcome self-desiccation problems in high-strength cement composites, it is necessary to keep the composites moist for a long time. Pre-saturated porous lightweight aggregates and super absorbent polymers are the most commonly used materials in high-strength cement composites to keep them moist for a long time; however, in this study, porous tea waste particles were used to keep the cement mortars moist. Pre-saturated tea waste particles were used in two different size proportions, making up as much as 3% of the volume of the binder. Moreover, commonly used lightweight aggregate (perlite) was also used to compare the outcomes of specimens made with tea waste particles. Different parameters were observed, such as, flow of fresh mortars, autogenous shrinkage, mechanical strengths and microstructure of specimens. The addition of tea waste and perlite particles in mortars made with Ordinary Portland cement (OPC) as the only binder, showed a reduction in flow, autogenous shrinkage and mechanical strengths, as compared to mixes made with partial addition of silica fume. Although, the use of silica fume improved the mechanical strength of specimens. Moreover, the use of saturated tea waste and perlite particles also improved the microstructure of specimens at an age of 28 days. The results revealed that the saturated tea waste particles have the ability to prevent autogenous shrinkage but they reduce strength of high-strength mortars at early ages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA