Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 64(4): 815-825, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27840029

RESUMO

The five-subunit yeast Paf1 complex (Paf1C) regulates all stages of transcription and is critical for the monoubiquitylation of histone H2B (H2Bub), a modification that broadly influences chromatin structure and eukaryotic transcription. Here, we show that the histone modification domain (HMD) of Paf1C subunit Rtf1 directly interacts with the ubiquitin conjugase Rad6 and stimulates H2Bub independently of transcription. We present the crystal structure of the Rtf1 HMD and use site-specific, in vivo crosslinking to identify a conserved Rad6 interaction surface. Utilizing ChIP-exo analysis, we define the localization patterns of the H2Bub machinery at high resolution and demonstrate the importance of Paf1C in targeting the Rtf1 HMD, and thereby H2Bub, to its appropriate genomic locations. Finally, we observe HMD-dependent stimulation of H2Bub in a transcription-free, reconstituted in vitro system. Taken together, our results argue for an active role for Paf1C in promoting H2Bub and ensuring its proper localization in vivo.


Assuntos
Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína de Ligação a TATA-Box/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Reagentes de Ligações Cruzadas/química , Cristalografia por Raios X , Formaldeído/química , Histonas/química , Histonas/genética , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/química , Proteína de Ligação a TATA-Box/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitinação
2.
Nucleic Acids Res ; 46(21): 11129-11143, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30325428

RESUMO

H2B ubiquitylation (H2Bub)-dependent H3K4 methylation is mediated by the multisubunit Set1 complex (Set1C) in yeast, but precisely how Set1C subunits contribute to this histone modification remains unclear. Here, using reconstituted Set1Cs and recombinant H2Bub chromatin, we identified Set1C subunits and domains involved in the H2Bub-dependent H3K4 methylation process, showing that the Spp1 PHDL domain, in conjunction with the Set1 n-SET domain, interacts with Swd1/Swd3 and that this interaction is essential for H2Bub-dependent H3K4 methylation. Importantly, Set1C containing an Spp1-Swd1 fusion bypasses the requirement for H2Bub for H3K4 methylation, suggesting that the role of H2Bub is to induce allosteric rearrangements of the subunit-interaction network within the active site of Set1C that are necessary for methylation activity. Moreover, the interaction between the Set1 N-terminal region and Swd1 renders the Spp1-lacking Set1C competent for H2Bub-dependent H3K4 methylation. Collectively, our results suggest that H2Bub induces conformational changes in Set1C that support H3K4 methylation activity.


Assuntos
Histona-Lisina N-Metiltransferase/química , Histonas/química , Proteínas de Saccharomyces cerevisiae/química , Domínio Catalítico , Cromatina/química , Histona Metiltransferases/química , Metilação , Ligação Proteica , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/química , Saccharomyces cerevisiae/genética , Ubiquitinação
3.
Proc Natl Acad Sci U S A ; 112(33): 10365-70, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26240340

RESUMO

Ubiquitylation of histone H2B at lysine 120 (H2B-Ub) plays a critical role in transcriptional elongation, chromatin conformation, as well as the regulation of specific histone H3 methylations. Herein, we report a strategy for the site-specific chemical attachment of ubiquitin to preassembled nucleosomes. This allowed expedited structure-activity studies into how H2B-Ub regulates H3K79 methylation by the methyltransferase human Dot1. Through an alanine scan of the ubiquitin surface, we identified a functional hotspot on ubiquitin that is required for the stimulation of human Dot1 in vitro. Importantly, this result was validated in chromatin from isolated nuclei by using a synthetic biology strategy that allowed selective incorporation of the hotspot-deficient ubiquitin mutant into H2B. The ubiquitin hotspot additionally impacted the regulation of ySet1-mediated H3K4 methylation but was not required for H2B-Ub-induced impairment of chromatin fiber compaction. These data demonstrate the utility of applying chemical ligation technologies to preassembled chromatin and delineate the multifunctionality of ubiquitin as a histone posttranslational modification.


Assuntos
Cromatina/química , Histonas/química , Metiltransferases/química , Ubiquitina/química , Sequência de Aminoácidos , Epigênese Genética , Histona-Lisina N-Metiltransferase , Humanos , Lisina/química , Metilação , Mutação , Nucleossomos/química , Ligação Proteica , Engenharia de Proteínas/métodos , Processamento de Proteína Pós-Traducional , Homologia de Sequência de Aminoácidos , Software , Relação Estrutura-Atividade , Propriedades de Superfície , Ubiquitinação
4.
bioRxiv ; 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37609355

RESUMO

Transcription activators are said to stimulate gene expression by "recruiting" coactivators to promoters, yet this term fits several different kinetic models. To directly analyze dynamics of activator-coactivator interactions, single-molecule microscopy was used to image promoter DNA, a transcription activator, and the Spt-Ada-Gcn5 Acetyltransferase (SAGA) complex within nuclear extract. SAGA readily, but transiently, binds nucleosome-free DNA without activator, while chromatin template association occurs nearly exclusively when activator is present. On both templates, activator increases SAGA association rates by up to an order of magnitude, and dramatically extends its dwell times. These effects reflect direct interactions with the transactivation domain, as VP16 or Rap1 activation domains produce different SAGA dynamics. Despite multiple bromodomains, acetyl-CoA or histone H3/H4 tail acetylation only modestly improves SAGA binding. Unexpectedly, histone acetylation more strongly affects activator residence. Our studies thus reveal two modes of SAGA interaction with the genome: a short-lived activator-independent interaction with nucleosome-free DNA, and a state tethered to promoter-bound transcription activators that can last up to several minutes.

5.
G3 (Bethesda) ; 12(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35944214

RESUMO

Protein fusions are frequently used for fluorescence imaging of individual molecules, both in vivo and in vitro. The SNAP, CLIP, HALO (aka HaloTag7), and DHFR protein tags can be linked to small molecule dyes that provide brightness and photo-stability superior to fluorescent proteins. To facilitate fluorescent dye tagging of proteins in the yeast Saccharomyces cerevisiae, we constructed a modular set of vectors with various combinations of labeling protein tags and selectable markers. These vectors can be used in combination to create strains where multiple proteins labeled with different colored dyes can be simultaneously observed.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Corantes Fluorescentes , Vetores Genéticos/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Cell Rep ; 36(3): 109417, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34289353

RESUMO

Activity-dependent GABAergic synapse plasticity is important for normal brain functions, but the underlying molecular mechanisms remain incompletely understood. Here, we show that Npas4 (neuronal PAS-domain protein 4) transcriptionally regulates the expression of IQSEC3, a GABAergic synapse-specific guanine nucleotide-exchange factor for ADP-ribosylation factor (ARF-GEF) that directly interacts with gephyrin. Neuronal activation by an enriched environment induces Npas4-mediated upregulation of IQSEC3 protein specifically in CA1 stratum oriens layer somatostatin (SST)-expressing GABAergic interneurons. SST+ interneuron-specific knockout (KO) of Npas4 compromises synaptic transmission in these GABAergic interneurons, increases neuronal activity in CA1 pyramidal neurons, and reduces anxiety behavior, all of which are normalized by the expression of wild-type IQSEC3, but not a dominant-negative ARF-GEF-inactive mutant, in SST+ interneurons of Npas4-KO mice. Our results suggest that IQSEC3 is a key GABAergic synapse component that is directed by Npas4 and ARF activity, specifically in SST+ interneurons, to orchestrate excitation-to-inhibition balance and control anxiety-like behavior.


Assuntos
Ansiedade/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Comportamento Animal , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Somatostatina/metabolismo , Animais , Neurônios GABAérgicos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Ligação Proteica , Sinapses/metabolismo , Transmissão Sináptica , Regulação para Cima
7.
Nat Commun ; 11(1): 2181, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358498

RESUMO

Methylation of histone H3 lysine 4 (H3K4) by Set1/COMPASS occurs co-transcriptionally, and is important for gene regulation. Set1/COMPASS associates with the RNA polymerase II C-terminal domain (CTD) to establish proper levels and distribution of H3K4 methylations. However, details of CTD association remain unclear. Here we report that the Set1 N-terminal region and the COMPASS subunit Swd2, which interact with each other, are both needed for efficient CTD binding in Saccharomyces cerevisiae. Moreover, a single point mutation in Swd2 that affects its interaction with Set1 also impairs COMPASS recruitment to chromatin and H3K4 methylation. A CTD interaction domain (CID) from the protein Nrd1 can partially substitute for the Set1 N-terminal region to restore CTD interactions and histone methylation. However, even when Set1/COMPASS is recruited via the Nrd1 CID, histone H2B ubiquitylation is still required for efficient H3K4 methylation, indicating that H2Bub acts after the initial recruitment of COMPASS to chromatin.


Assuntos
Cromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Metilação , Mutação Puntual , Ligação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , RNA Polimerase II/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitinação
8.
Exp Mol Med ; 49(4): e324, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28450737

RESUMO

Histone modifications are key epigenetic regulatory features that have important roles in many cellular events. Lysine methylations mark various sites on the tail and globular domains of histones and their levels are precisely balanced by the action of methyltransferases ('writers') and demethylases ('erasers'). In addition, distinct effector proteins ('readers') recognize specific methyl-lysines in a manner that depends on the neighboring amino-acid sequence and methylation state. Misregulation of histone lysine methylation has been implicated in several cancers and developmental defects. Therefore, histone lysine methylation has been considered a potential therapeutic target, and clinical trials of several inhibitors of this process have shown promising results. A more detailed understanding of histone lysine methylation is necessary for elucidating complex biological processes and, ultimately, for developing and improving disease treatments. This review summarizes enzymes responsible for histone lysine methylation and demethylation and how histone lysine methylation contributes to various biological processes.


Assuntos
Código das Histonas , Histona Desmetilases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Humanos , Metilação
9.
Cell Discov ; 3: 17040, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29071121

RESUMO

The Set1 family of histone H3 lysine 4 (H3K4) methyltransferases is highly conserved from yeast to human. Here we show that the Set1 complex (Set1C) directly binds RNA in vitro through the regions that comprise the double RNA recognition motifs (dRRM) and N-SET domain within Set1 and its subunit Spp1. To investigate the functional relevance of RNA binding, we performed UV RNA crosslinking (CRAC) for Set1 and RNA polymerase II in parallel with ChIP-seq experiments. Set1 binds nascent transcripts through its dRRM. RNA binding is important to define the appropriate topology of Set1C distribution along transcription units and correlates with the efficient deposition of the H3K4me3 mark. In addition, we uncovered that Set1 binds to different classes of RNAs to levels that largely exceed the levels of binding to the general population of transcripts, suggesting the Set1 persists on these RNAs after transcription. This class includes RNAs derived from SET1, Ty1 retrotransposons, specific transcription factors genes and snRNAs (small nuclear RNAs). We propose that Set1 modulates adaptive responses, as exemplified by the post-transcriptional inhibition of Ty1 retrotransposition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA