Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Pharm Bull (Tokyo) ; 64(8): 1108-17, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27477648

RESUMO

The purposes of the present study were to develop a self-microemulsifying drug delivery system (SMEDDS) containing bortezomib, a proteasome inhibitor. The solubility of the drug was evaluated in 15 pharmaceutical excipients. Combinations of oils, surfactants and cosurfactants were screened by drawing pseudo-ternary phase diagrams. The system exhibiting the largest region of microemulsion was considered optimal. Bortezomib SMEDDS spontaneously formed a microemulsion when diluted with an aqueous medium with a median droplet size of approximately 20-30 nm. In vitro release studies showed that the SMEDDS had higher initial release rates for the drug when compared with the raw drug material alone. Measurement of the viscosity, size, and ion conductivity indicated that a phase inversion from water in an oil system to oil in a water system occurred when the weight ratio of the water exceeded 30% of the entire microemulsion system. In a pharmacokinetics study using rats, the bortezomib microemulsion failed to improve the bioavailability of the drug. The reason was assumed to be degradation of the drug in the microemulsion in the gastrointestinal tract. However, bortezomib in Labrasol(®) solution (an aqueous solution containing 0.025% Labrasol(®)) showed significantly increased area under the curve from 0-24 h (AUC0-24 h) and maximum plasma concentration (Cmax) values compared to the drug suspension. The findings of this study imply that oral delivery of a bortezomib and colloidal system containing Labrasol(®) could be an effective strategy for the delivery of bortezomib.


Assuntos
Bortezomib/administração & dosagem , Bortezomib/farmacocinética , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/métodos , Animais , Disponibilidade Biológica , Emulsões , Trato Gastrointestinal/metabolismo , Glicerídeos/química , Masculino , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley , Solubilidade , Propriedades de Superfície , Viscosidade
2.
Biochem Biophys Res Commun ; 465(1): 71-6, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26235879

RESUMO

Shikonin, a natural naphthoquinone isolated from the Chinese traditional medicine Zi Cao (purple gromwell), is known to suppress the growth of several cancer cell types. In this study, we evaluated the pro-apoptotic effects of shikonin on MCF-7 and HeLa cells, and investigated the underlying mechanism. Shikonin-induced apoptosis was associated with activation of caspase-3, poly(ADP-ribose) polymerase (PARP) cleavage, up-regulation of p73, and down-regulation of BCL-2. Shikonin also induced up-regulation of the tumor suppressor gene, p16(INK4A). Increasing transcriptional activity of p16(INK4A) by shikonin treatment, we observed in luciferase promoter assay, reflects reduced promoter binding by down-regulation of ICBP90 (inverted CCAAT box binding protein, 90 kDa), which are involved in down-regulation of its partner, DNMT1 (DNA methyltransferase 1). On the basis of these results, we conclude that shikonin causes apoptosis via a p73-related, caspase-3-dependent pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/antagonistas & inibidores , Proteínas de Ligação a DNA/agonistas , Regulação Neoplásica da Expressão Gênica , Naftoquinonas/farmacologia , Proteínas Nucleares/agonistas , Proteínas Supressoras de Tumor/agonistas , Apoptose/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/agonistas , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Genes Reporter , Células HeLa , Humanos , Luciferases/genética , Luciferases/metabolismo , Células MCF-7 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Proteína Tumoral p73 , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases
3.
Pharm Res ; 31(6): 1418-25, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23934255

RESUMO

PURPOSE: The application of gold nanoparticles (AuNPs) in biomedical field was limited due to the low stability in the biological condition. Herein, to enhance stability and tumor targeting ability of AuNPs, their surface was modified with biocompatible glycol chitosan (GC) and the in vivo biodistribution of GC coated AuNPs (GC-AuNPs) were studied through computed tomography (CT). METHODS: Polymer-coated gold nanoparticles were produced using GC as a reducing agent and a stabilizer. Their feasibility in biomedical application was explored through CT in tumor-bearing mice. RESULTS: Stability of gold nanoparticles increased in the physiological condition due to the GC coating layer on the surface. Tomographic images of tumor were successfully obtained in the tumor-xenografted animal model when the GC-AuNPs were used as a CT contrast agent. The tumor targeting property of the gold nanoparticles was due to the properties of GC because GC-AuNPs were accumulated in the tumor, while most of heparin-coated nanoparticles were found in the liver and spleen. CONCLUSIONS: The polymer properties on the surface played an important role in the behavior of gold nanoparticles in the biological condition and the enhanced stability and tumor targeting property of nanoparticles were inherited from GC on the surface.


Assuntos
Materiais Biocompatíveis , Quitosana/química , Meios de Contraste/química , Ouro/química , Nanopartículas Metálicas/química , Neoplasias/diagnóstico , Animais , Sobrevivência Celular/efeitos dos fármacos , Quitosana/toxicidade , Meios de Contraste/farmacocinética , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/secundário , Camundongos , Neoplasias/patologia , Radiografia , Distribuição Tecidual
4.
J Nanosci Nanotechnol ; 14(10): 7606-10, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25942834

RESUMO

Cancer cells overexpressing folate receptors have been targeted using a folate decorated carriers for anti-cancer drugs in aims to overcome the tissue non-specificity of anti-cancer agents. We here prepared magnetic nanoparticles and surface-decorated them with different amounts of folate to optimize the number of the immobilized folate on the carriers for superior targeting effects. Magnetic nanoparticles were prepared by oxidizing ferric or ferrous chloride solution to iron oxide in the presence of poly(vinyl alcohol). The magnetic nanoparticles were functionalized with primary amines for subsequent reactions with the different feed ratios of the activated folate. The magnetization degree of the folate magnetic magnetization were slightly decreased when the folate on the particles were increased. Intracellular uptakes of the nanoparticles were shown to be increased and become saturated dependent on the amounts of the surface-immobilized folate. The folate-decorated magnetic nanoparticles showed negligible cytotoxicity against KB cells from 5 µg to 35 µg of the nanoparticle weights.


Assuntos
Portadores de Fármacos/química , Ácido Fólico/química , Nanopartículas de Magnetita/química , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Ácido Fólico/metabolismo , Ácido Fólico/toxicidade , Humanos , Espaço Intracelular/metabolismo , Células KB , Relação Estrutura-Atividade , Propriedades de Superfície
5.
Bioconjug Chem ; 24(11): 1850-60, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24107100

RESUMO

Transferrin (TF) is widely used as a tumor-targeting ligand for the delivery of anticancer drugs because the TF receptor is overexpressed on the surface of various fast-growing cancer cells. In this article, we report on TF nanoparticles as an siRNA delivery carrier for in vivo tumor-specific gene silencing. To produce siRNA carrying TF nanoparticles (NPs), both TF and siRNA were chemically modified with sulfhydryl groups that can build up self-cross-linked siRNA-TF NPs. Self-polymerized 5'-end thiol-modified siRNA (poly siRNA, psi) and thiolated transferrin (tTF) were spontaneously cross-linked to form stable NPs (psi-tTF NPs) under optimized conditions, and they could be reversibly degraded to release functional monomeric siRNA molecules under reductive conditions. Receptor-mediated endocytosis of TF induced rapid tumor-cell-specific uptake of the psi-tTF NPs, and the internalized NPs resulted in a downregulation of the target protein in red-fluorescent-protein-expressing melanoma cancer cells (RFP/B16F10) with negligible cytotoxicity. After systemic administration, the psi-tTF NPs showed marked accumulation at the tumor, leading to successful target-gene silencing in vivo. This psi-tTF NP system provided a safe and effective strategy for in vivo systemic siRNA delivery for cancer therapy.


Assuntos
Portadores de Fármacos/química , Inativação Gênica , Nanopartículas/química , Neoplasias Experimentais/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Transferrina/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Endocitose , Camundongos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Polimerização , RNA Interferente Pequeno/genética , Receptores da Transferrina/metabolismo , Compostos de Sulfidrila/química , Distribuição Tecidual
6.
Mol Pharm ; 10(6): 2190-8, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23586421

RESUMO

An efficient and straightforward method for radiolabeling nanoparticles is urgently needed to understand the in vivo biodistribution of nanoparticles. Herein, we investigated a facile and highly efficient strategy to prepare radiolabeled glycol chitosan nanoparticles with (64)Cu via a strain-promoted azide-alkyne cycloaddition strategy, which is often referred to as click chemistry. First, the azide (N3) group, which allows for the preparation of radiolabeled nanoparticles by copper-free click chemistry, was incorporated to glycol chitosan nanoparticles (CNPs). Second, the strained cyclooctyne derivative, dibenzyl cyclooctyne (DBCO) conjugated with a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator, was synthesized for preparing the preradiolabeled alkyne complex with (64)Cu radionuclide. Following incubation with the (64)Cu-radiolabeled DBCO complex (DBCO-PEG4-Lys-DOTA-(64)Cu with high specific activity, 18.5 GBq/µmol), the azide-functionalized CNPs were radiolabeled successfully with (64)Cu, with a high radiolabeling efficiency and a high radiolabeling yield (>98%). Importantly, the radiolabeling of CNPs by copper-free click chemistry was accomplished within 30 min, with great efficiency in aqueous conditions. In addition, we found that the (64)Cu-radiolabeled CNPs ((64)Cu-CNPs) did not show any significant effect on the physicochemical properties, such as size, zeta potential, or spherical morphology. After (64)Cu-CNPs were intravenously administered to tumor-bearing mice, the real-time, in vivo biodistribution and tumor-targeting ability of (64)Cu-CNPs were quantitatively evaluated by microPET images of tumor-bearing mice. These results demonstrate the benefit of copper-free click chemistry as a facile, preradiolabeling approach to conveniently radiolabel nanoparticles for evaluating the real-time in vivo biodistribution of nanoparticles.


Assuntos
Quitosana/química , Química Click/métodos , Radioisótopos de Cobre/química , Nanopartículas/química , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Nus
7.
AAPS PharmSciTech ; 14(2): 794-801, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23636817

RESUMO

Electrospinning was employed to fabricate chitosan microspheres by a single-step encapsulation of proteins without organic solvents. Chitosan in acetic acid was electrospun toward a grounded sodium carbonate solution at various electric potential and feeding rates. Electrospun microspheres became insoluble and solidified in the sodium carbonate solution by neutralization of chitosan acetate. When the freeze-dried microspheres were examined by scanning electron microscopy, the small particle size was obtained at higher voltages. This is explained by the chitosan droplet size at the electrospinning needle was clearly controllable by the electric potential. The recovery yield of chitosan microspheres was dependent on the concentration of chitosan solution due to the viscosity is the major factor affecting formation of chitosan droplet during curling of the electrospinning jets. For protein encapsulation, fluorescently labeled bovine serum albumin (BSA) was codissolved with chitosan in the solution and electrospun. At higher concentration of sodium carbonate solution and longer solidification time in the solution, the encapsulation efficiency of the protein was confirmed to be significantly high. The high encapsulation efficiency was achievable by instant solidification of microspheres and electrostatic interactions between chitosan and BSA. Release profiles of BSA from the microspheres showed that the protein release was faster in acidic solution due to dissolution of chitosan. Reversed-phase chromatography of the released fractions confirmed that exposure of BSA to acidic solution during the electrospinning did not result in structural changes of the encapsulated protein.


Assuntos
Quitosana/química , Portadores de Fármacos , Soroalbumina Bovina/química , Ácido Acético/química , Ânions , Carbonatos/química , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Dessecação , Congelamento , Cinética , Microscopia Eletrônica de Varredura , Microesferas , Tamanho da Partícula , Conformação Proteica , Solubilidade , Tecnologia Farmacêutica/métodos , Viscosidade
8.
Bioconjug Chem ; 23(5): 1022-8, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22515499

RESUMO

A novel iodinated chitosan-backboned conjugate (GC-I-Ce6) was designed and prepared to fabricate self-assembled biopolymeric nanoparticles with heavy atom-effected enhanced singlet oxygen generation as well as biological merits. The heavy atom-rich nature of the hydrophobic particle interior was characterized with X-ray absorption and the modified photophysical properties of a chemically embedded photosensitizer, chlorin e6 (Ce6). From the comparative spectroscopic studies as well as cellular and animal experiments, it has been shown that the self-assembled GC-I-Ce6 nanoparticles have enhanced capability of singlet oxygen generation by the intraparticle heavy-atom effect, along with high tumor targetability in vitro and in vivo thanks to the glycol chitosan-surfaced exterior with biocompatible, positively charged and tumor-homing characteristics. Actual efficacy improvement in the photodynamic therapy of a human breast cancer cell line (MDA-MB-231) demonstrates potential of our photophysically and pharmaceutically motivated hybrid bioconjugate approach for nanomedicine applications.


Assuntos
Quitosana/química , Nanopartículas/química , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , Oxigênio Singlete/química , Animais , Mama/efeitos dos fármacos , Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Clorofilídeos , Sistemas de Liberação de Medicamentos , Feminino , Halogenação , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Porfirinas/farmacologia
9.
Chemistry ; 18(28): 8699-704, 2012 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-22689413

RESUMO

Colorless 1,3-bis(dicyanomethylidene)indan is an organic acid (pK(a) ≈3.0) that turns blue in polar media owing to self-deprotonation. Moreover, its colored conjugate base shows potential as a minimal anionic polymethine dye for probing biomolecules in cells and in vivo through noncovalent complexation and near-infrared fluorescence signaling.


Assuntos
Derivados de Benzeno/química , Colorimetria/métodos , Corantes Fluorescentes/síntese química , Indanos/química , Animais , Fluorescência , Corantes Fluorescentes/química , Camundongos , Modelos Teóricos , Espectroscopia de Luz Próxima ao Infravermelho
10.
Angew Chem Int Ed Engl ; 51(29): 7203-7, 2012 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-22696263

RESUMO

The condensed version: Thiolated glycol chitosan can form stable nanoparticles with polymerized siRNAs through charge-charge interactions and self-cross-linking (see scheme). This poly-siRNA/glycol chitosan nanoparticles (psi-TGC) provided sufficient in vivo stability for systemic delivery of siRNAs. Knockdown of tumor proteins by psi-TGC resulted in a reduction in tumor size and vascularization.


Assuntos
Quitosana/química , Nanopartículas/química , Neoplasias/terapia , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/uso terapêutico , Animais , Linhagem Celular Tumoral , Terapia Genética , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , RNA Interferente Pequeno/genética , Compostos de Sulfidrila/química , Fator A de Crescimento do Endotélio Vascular/genética
11.
J Control Release ; 341: 646-660, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34921973

RESUMO

We report copper(II) arsenite (CuAS)-integrated polymer micelles (CuAS-PMs) as a new class of Fenton-like catalytic nanosystem that can display reactive oxygen species (ROS)-manipulating anticancer therapeutic activity. CuAS-PMs were fabricated through metal-catechol chelation-based formation of the CuAS complex on the core domain of poly (ethylene glycol)-b-poly(3,4-dihydroxy-L-phenylalanine) (PEG-PDOPA) copolymer micelles. CuAS-PMs maintained structural robustness under serum conditions. The insoluble state of the CuAS complex was effectively retained at physiological pH, whereas, at endosomal pH, the CuAS complex was ionized to release arsenite and cuprous Fenton catalysts (Cu+ ions). Upon endocytosis, CuAS-PMs simultaneously released hydrogen peroxide (H2O2)-generating arsenite and Fenton-like reaction-catalyzing Cu+ ions in cancer cells, which synergistically elevated the level of highly cytotoxic hydroxyl radicals (•OH), thereby preferentially killing cancer cells. Animal experiments demonstrated that CuAS-PMs could effectively suppress the growth of solid tumors without systemic in vivo toxicity. The design rationale of CuAS-PMs may provide a promising strategy to develop diverse oxidative stress-amplifying agents with great potential in cancer-specific therapy.


Assuntos
Antineoplásicos , Arsenitos , Nanopartículas , Animais , Antineoplásicos/química , Arsenitos/farmacologia , Cobre , Peróxido de Hidrogênio/química , Nanopartículas/química , Estresse Oxidativo
12.
Bioconjug Chem ; 22(2): 125-31, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21218786

RESUMO

We report a new apoptosis nanoprobe (Apo-NP) designed on the basis of a polymer nanoparticle platform. This simple one-step technique is capable of boosting fluorescence signals upon apoptosis in living cells, enabling real-time imaging of apoptosis in single cells and in vivo. The Apo-NP efficiently delivers chemically labeled, dual-quenched caspase-3-sensitive fluorogenic peptides into cells, allowing caspase-3-dependent strong fluorescence amplification to be imaged in apoptotic cells in real-time and at high resolution. The design platform of the Apo-NP is flexible and can be fine-tuned for a wide array of applications such as identification of caspase-related apoptosis in pathologies and for monitoring therapeutic efficacy of apoptotic drugs in cancer treatment.


Assuntos
Apoptose , Corantes Fluorescentes/química , Imagem Molecular , Nanopartículas/química , Polímeros/química , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/química , Caspase 3/metabolismo , Doxorrubicina/farmacologia , Corantes Fluorescentes/administração & dosagem , Humanos , Medições Luminescentes , Camundongos , Estrutura Molecular , Nanopartículas/administração & dosagem , Neoplasias Experimentais , Tamanho da Partícula , Polímeros/administração & dosagem , Propriedades de Superfície , Células Tumorais Cultivadas
13.
Biomacromolecules ; 12(4): 1224-33, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21344942

RESUMO

A biocompatible, robust polymer micelle bearing pH-hydrolyzable shell cross-links was developed for efficient intracellular delivery of doxorubicin (DOX). The rationally designed triblock copolymer of poly(ethylene glycol)-poly(L-aspartic acid)-poly(L-phenylalanine) (PEG-PAsp-PPhe) self-assembled to form polymer micelles with three distinct domains of the PEG outer corona, the PAsp middle shell, and the PPhe inner core. Shell cross-linking was performed by the reaction of ketal-containing cross-linkers with Asp moieties in the middle shells. The shell cross-linking did not change the micelle size and the spherical morphology. Fluorescence quenching experiments confirmed the formation of shell cross-linked diffusion barrier, as judged by the reduced Stern-Volmer quenching constant (K(SV)). Dynamic light scattering and fluorescence spectroscopy experiments showed that shell cross-linking improved the micellar physical stability even in the presence of micelle disrupting surfactants, sodium dodecyl sulfate (SDS). The hydrolysis kinetics study showed that the hydrolysis half-life (t(1/2)) of ketal cross-links was estimated to be 52 h at pH 7.4, whereas 0.7 h at pH 5.0, indicating the 74-fold faster hydrolysis at endosomal pH. Ketal cross-linked micelles showed the rapid DOX release at endosomal pH, compared to physiological pH. Confocal laser scanning microscopy (CLSM) showed that ketal cross-linked micelles were taken up by the MCF-7 breast cancer cells via endocytosis and transferred into endosomes to hydrolyze the cross-links by lowered pH and finally facilitate the DOX release to inhibit proliferation of cancer cells. This ketal cross-linked polymer micelle is promising for enhanced intracellular delivery efficiency of many hydrophobic anticancer drugs.


Assuntos
Aminoácidos/química , Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Micelas , Polietilenoglicóis/química , Polímeros/química , Linhagem Celular Tumoral , Cromatografia em Gel , Portadores de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Espectroscopia de Ressonância Magnética , Dodecilsulfato de Sódio/química , Espectrometria de Fluorescência
14.
Biol Pharm Bull ; 34(9): 1508-13, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21881242

RESUMO

Previously, the authors demonstrated that the triterpenoid glycoside niga-ichigoside F1 (NIF1) and its aglycone 23-hydroxytormentic acid (23-HTA) isolated from the unripe fruits of Rubus coreanus (Rosaceae) ameliorate cisplatin-induced toxicity in renal epithelial LLC-PK1 cells. In the present study, the nephroprotective effects of NIF1 and 23-HTA were investigated in Sprague-Dawley rats with acute renal injury induced by a single intraperitoneal (i.p.) injection of cisplatin (7 mg/kg). Pretreatment with 23-HTA (10 mg/kg/d, per os (p.o.)) significantly reduced cisplatin-induced elevations in blood urea nitrogen (BUN) and serum creatinine level, whereas NIF1 (10 mg/kg, p.o.) slightly reduced these levels. In addition, pretreatment with 23-HTA prevented cisplatin-induced hydroxyl radical generation, malondialdehyde (MDA) production, glutathione (GSH) depletion, and cisplatin-induced changes in the activities of oxidant and antioxidant enzymes in rat renal tissues. In addition, histopathological examinations showed that 23-HTA pretreatment reduced cisplatin-induced acute tubular necrosis and histological changes. In contrast, NIF1 was found to have a slight or no influence on cisplatin-induced oxidative enzymes and acute tubular necrosis. Taken together, these results suggest that protective effect of 23-HTA pretreatment on cisplatin-induced renal damage is associated with the attenuation of oxidative stress and the preservation of antioxidant enzymes.


Assuntos
Antineoplásicos/toxicidade , Cisplatino/toxicidade , Nefropatias/tratamento farmacológico , Triterpenos/farmacologia , Animais , Antioxidantes/metabolismo , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Glutationa/metabolismo , Radical Hidroxila/metabolismo , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Células LLC-PK1 , Masculino , Malondialdeído/metabolismo , Ratos , Ratos Sprague-Dawley , Suínos
15.
Bioconjug Chem ; 21(4): 578-82, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20201550

RESUMO

We report tumor targeting nanoparticles for optical/MR dual imaging based on self-assembled glycol chitosan to be a potential multimodal imaging probe. To develop an optical/MR dual imaging probe, biocompatible and water-soluble glycol chitosan (M(w) = 50 kDa) were chemically modified with 5beta-cholanic acid (CA), resulting in amphiphilic glycol chitosan-5beta-cholanic acid conjugates (GC-CA). For optical imaging near-infrared fluorescence (NIRF) dye, Cy5.5, was conjugated to GC-CA resulting in Cy5-labeled GC-CA conjugates (Cy5.5-GC-CA). Moreover, in order to chelate gadolinium (Gd(III)) in the Cy5.5-GC-CA conjugates, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was directly conjugated in Cy5.5-GC-CA. Finally, the excess GdCl(3) was added to DOTA modified Cy5.5-GC-CA conjugates in distilled water (pH 5.5). The freshly prepared Gd(III) encapsulated Cy5.5-GC-CA conjugates were spontaneously self-assembled into stable Cy5.5 labeled and Gd(III) encapsulated chitosan nanoparticles (Cy5.5-CNP-Gd(III)). The Cy5.5-CNP-Gd(III) was spherical in shape and approximately 350 nm in size. From the cellular experiment, it was demonstrated that Cy5.5-CNP-Gd(III) were efficiently taken up and distributed in cytoplasm (NIRF filter; red). When the Cy5.5-GC-Gd(III) were systemically administrated into the tail vein of tumor-bearing mice, large amounts of nanoparticles were successfully localized within the tumor, which was confirmed by noninvasive near-infrared fluorescence and MR imaging system simultaneously. These results revealed that the dual-modal imaging probe of Cy5.5-CNP-Gd(III) has the potential to be used as an optical/MR dual imaging agent for cancer treatment.


Assuntos
Quitosana , Imageamento por Ressonância Magnética , Nanopartículas , Neoplasias/diagnóstico , Quitosana/síntese química , Quitosana/química , Ácidos Cólicos/química , Fluorescência , Corantes Fluorescentes/química , Gadolínio/química , Nanopartículas/química , Espectroscopia de Luz Próxima ao Infravermelho
16.
Nanotechnology ; 21(22): 225101, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20453291

RESUMO

We report a smart mesoporous silica nanoparticle (MSN) with a pore surface designed to undergo charge conversion in intracellular endosomal condition. The surface of mesopores in the silica nanoparticles was engineered to have pH-hydrolyzable citraconic amide. Solid-state nuclear magnetic resonance (NMR), Fourier-transform infrared (FT-IR) spectroscopy, and Brunauer-Emmett-Teller (BET) analyses confirmed the successful modification of the pore surfaces. MSNs (MSN-Cit) with citraconic amide functionality on the pore surfaces exhibited a negative zeta potential (-10 mV) at pH 7.4 because of the presence of carboxylate end groups. At cellular endosomal pH (approximately 5.0), MSN-Cit have a positive zeta potential (16 mV) indicating the dramatic charge conversion from negative to positive by hydrolysis of surface citraconic amide. Cytochrome c (Cyt c) of positive charges could be incorporated into the pores of MSN-Cit by electrostatic interactions. The release of Cyt c can be controlled by adjusting the pH of the release media. At pH 7.4, the Cyt c release was retarded, whereas, at pH 5.0, MSN-Cit facilitated the release of Cyt c. The released Cyt c maintained the enzymatic activity of native Cyt c. Hemolytic activity of MSN-Cit over red blood cells (RBCs) was more pronounced at pH 5.0 than at pH 7.0, indicating the capability of intracellular endosomal escape of MSN carriers. Confocal laser scanning microscopy (CLSM) studies showed that MSN-Cit effectively released Cyt c in endosomal compartments after uptake by cancer cells. The MSN developed in this work may serve as efficient intracellular carriers of many cell-impermeable therapeutic proteins.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Proteínas/administração & dosagem , Proteínas/química , Dióxido de Silício/química , Adsorção , Sobrevivência Celular , Anidridos Citracônicos/química , Anidridos Citracônicos/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Células HeLa , Hemólise , Humanos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Modelos Químicos , Nitrogênio , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Planta Med ; 76(7): 701-4, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19960413

RESUMO

Deoxypodophyllotoxin (DPT) is a bioactive compound of Anthriscus sylvestris (Apiaceae). In the present study, the inhibition of cytochrome P450 (CYP) by DPT was evaluated in human liver microsomes (HLM) and the baculovirus-insect cell-expressed human CYPs using a cocktail probe assay. When a mixture of specific CYP substrates was incubated with DPT in HLM, CYP2C9-catalyzed diclofenac 4-hydroxylation and CYP3A4-catalyzed midazolam 1-hydroxylation were strongly inhibited by DPT, with IC (50) values of 6.3 and 9.2 microM, respectively. The Lineweaver-Burke plots for the inhibition of CYP2C9 and CYP3A4 in HLM and baculovirus-insect cell-expressed human CYPs were consistent with a competitive type of inhibition. From these results, DPT was characterized to be a competitive inhibitor of CYP2C9 and CYP3A4, with K(i) values of 3.5 and 10.8 microM in HLM and 24.9 and 3.5 microM in baculovirus-insect cell-expressed human CYPs, respectively.


Assuntos
Apiaceae , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Inibidores do Citocromo P-450 CYP3A , Podofilotoxina/análogos & derivados , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP3A , Avaliação Pré-Clínica de Medicamentos , Medicamentos de Ervas Chinesas , Humanos , Microssomos Hepáticos , Podofilotoxina/farmacologia
18.
Pharmaceutics ; 12(7)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635231

RESUMO

Theranostic nanoparticles can deliver therapeutic agents as well as diverse imaging agents to tumors. The enhanced permeation and retention (EPR) effect is regarded as a crucial mechanism for the tumor-targeted delivery of nanoparticles. Although a large number of studies of the EPR effect of theranostic nanoparticles have been performed, the effect of the change in the body size of the host on the EPR effect is not fully understood. In this regard, comparative research is needed on the behavior of nanoparticles in large animals for developing the nanoparticles to the clinical stage. In this study, we prepared fluorophore (indocyanine green (ICG) or cyanine 5.5 (Cy5.5))-conjugated glycol chitosan nanoparticles (CNPs) for comparing the tumor-targeting efficacy in VX2 tumor-bearing mouse and rabbit models. As expected, the CNPs formed nano-sized spherical nanoparticles and were stable for 8 days under aqueous conditions. The CNPs also exhibited dose-dependent cellular uptake into VX2 tumor cells without cytotoxicity. The half-life of the near-infrared fluorescence (NIRF) signals in the blood were 3.25 h and 4.73 h when the CNPs were injected into mice and rabbits, respectively. Importantly, the CNPs showed excellent tumor accumulation and prolonged biodistribution profiles in both the VX2 tumor-bearing mouse and rabbit models, wherein the tumor accumulation was maximized at 48 h and 72 h, respectively. Based on the excellent tumor accumulation of the CNPs, finally, the CNPs were used in the image-guided surgery of the rabbit orthotopic VX2 lung tumor model. The lung tumor tissue was successfully removed based on the NIRF signal from the CNPs in the tumor tissue. This study shows that CNPs can be potentially used for tumor theragnosis in small animals and large animals.

19.
Arch Pharm Res ; 32(5): 639-46, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19471876

RESUMO

The genetic materials for systemic administration meet a number of hurdles before they reach the nucleus of the target cells, such as enzymatic degradation in the bloodstream, extravascularization around the target tissue, endocytosis by the target cells, and endosomal escape of the genes. Therefore, there have been tremendous needs of effective gene carriers that can deliver the genetic materials to the target site. Of numerous approaches, recent studies have demonstrated that the lipid-based emulsion systems have the high potential as non-viral gene carriers: 1 lipid emulsions are biocompatible because their major constituents are composed of the non-toxic oils and amphiphilic lipids; 2 the cationic lipid emulsions can form nano-sized complexes with negatively charged DNAs, through which the genetic materials can be protected from the enzymatic degradation in the body fluids; 3 The emulsion/DNA complexes are shown to be stable in the bloodstream since their surfaces are rarely recognized by the immune-related cells and serum proteins; and 4 the surfaces of the emulsion complexes are readily modified by varying the lipid composition. In this review, highlighted are the recent advances in the emulsion-based gene carriers.


Assuntos
Núcleo Celular/metabolismo , DNA/metabolismo , Técnicas de Transferência de Genes , Terapia Genética/métodos , Óleos/metabolismo , Transporte Ativo do Núcleo Celular , DNA/química , Desoxirribonucleases/metabolismo , Emulsificantes/química , Emulsões , Nanopartículas , Óleos/química , Óleos/toxicidade , Distribuição Tecidual
20.
Int Immunopharmacol ; 8(3): 431-41, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18279797

RESUMO

In the present study, we investigated the effect of asiatic acid (the aglycon of asiaticoside) and asiaticoside isolated from the leaves of Centella asiatica (Umbelliferae) on LPS-induced NO and PGE(2) production in RAW 264.7 macrophage cells. Asiatic acid more potently inhibited LPS-induced NO and PGE(2) production than asiaticoside. Consistent with these observations, the protein and mRNA expression levels of inducible iNOS and COX-2 enzymes were inhibited by asiatic acid in a concentration-dependent manner. In addition, asiatic acid dose-dependently reduced the production of IL-6, IL-1 beta and TNF-alpha in LPS-stimulated RAW 264.7 macrophage cells. Furthermore, asiatic acid inhibited the NF-kappaB activation induced by LPS, and this was associated with the abrogation of I kappa B-alpha degradation and with subsequent decreases in nuclear p65 and p50 protein levels. Moreover, the phosphorylations of IKK, p38, ERK1/2, and JNK in LPS-stimulated RAW 264.7 cells were suppressed by asiatic acid in a dose-dependent manner. These results suggest that the anti-inflammatory properties of asiatic acid might be the results from the inhibition of iNOS, COX-2, IL-6, IL-1 beta, and TNF-alpha expressions through the down-regulation of NF-kappaB activation via suppression of IKK and MAP kinase (p38, ERK1/2, and JNK) phosphorylation in RAW 264.7 cells.


Assuntos
Dinoprostona/biossíntese , Quinase I-kappa B/fisiologia , Lipopolissacarídeos/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/fisiologia , NF-kappa B/antagonistas & inibidores , Óxido Nítrico/biossíntese , Triterpenos/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Citocinas/biossíntese , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Triterpenos Pentacíclicos , Proteínas Proto-Oncogênicas c-raf/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA