Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 47(32): 10842-10846, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-30015817

RESUMO

Dimeric and monomeric supported single-site Fe(ii) pre-catalysts on SiO2 have been prepared via organometallic grafting and characterized with advanced spectroscopic techniques. Manipulation of the surface hydroxyl concentration on the support influences monomer/dimer formation. While both pre-catalysts are highly active in liquid-phase hydrogenation, the dimeric pre-catalyst is ∼3× faster than the monomer. Preliminary XAS experiments on the H2-activated samples suggest the active species are isolated Fe(ii) sites.

2.
Nat Commun ; 4: 2437, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24077265

RESUMO

Dissolution and migration of manganese from cathode lead to severe capacity fading of lithium manganate-carbon cells. Overcoming this major problem requires a better understanding of the mechanisms of manganese dissolution, migration and deposition. Here we apply a variety of advanced analytical methods to study lithium manganate cathodes that are cycled with different anodes. We show that the oxidation state of manganese deposited on the anodes is +2, which differs from the results reported earlier. Our results also indicate that a metathesis reaction between Mn(II) and some species on the solid-electrolyte interphase takes place during the deposition of Mn(II) on the anodes, rather than a reduction reaction that leads to the formation of metallic Mn, as speculated in earlier studies. The concentration of Mn deposited on the anode gradually increases with cycles; this trend is well correlated with the anodes rising impedance and capacity fading of the cell.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA