Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 62(47): 19218-19229, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37948607

RESUMO

The synthesis, characterization, electrochemical performance, and theoretical modeling of two base-metal charge carrier complexes incorporating a pendent quaternary ammonium group, [Ni(bppn-Me3)][BF4], 3', and [Fe(PyTRENMe)][OTf]3, 4', are described. Both complexes were produced in high yield and fully characterized using NMR, IR, and UV-vis spectroscopies as well as elemental analysis and single-crystal X-ray crystallography. The solubility of 3' in acetonitrile showed a 283% improvement over its neutral precursor, whereas the solubility of complex 4' was effectively unchanged. Cyclic voltammetry indicates an ∼0.1 V positive shift for all waves, with some changes in reversibility depending on the wave. Bulk electrochemical cycling demonstrates that both 3' and 4' can utilize the second more negative wave to a degree, whereas 4' ceases to have a reversible positive wave. Flow cell testing of 3' and 4' with Fc as the posolyte reveals little improvement to the cycling performance of 3' compared with its parent complex, whereas 4' exhibits reductions in capacity decay when cycling either negative wave. Postcycling CVs indicate that crossover is the likely source of capacity loss in complexes 3, 3', and 4' because there is little change in the CV trace. Density functional theory calculations indicate that the ammonium group lowers the HOMO energy in 3' and 4', which may impart stability to cycling negative waves while making positive waves less accessible. Overall, the incorporation of a positively charged species can improve solubility, stored electron density, and capacity decay depending on the complex, features critical to high energy density redox flow battery performance.

2.
J Am Chem Soc ; 144(34): 15569-15580, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35977083

RESUMO

Cu systems feature prominently in aerobic oxidative catalysis in both biology and synthetic chemistry. Metal ligand cooperativity is a common theme in both areas as exemplified by galactose oxidase and by aminoxyl radicals in alcohol oxidations. This has motivated investigations into the aerobic chemistry of Cu and specifically the isolation and study of Cu-superoxo species that are invoked as key catalytic intermediates. While several examples of complexes that model biologically relevant Cu(II) superoxo intermediates have been reported, they are not typically competent aerobic catalysts. Here, we report a new Cu complex of the redox-active ligand tBu,TolDHP (2,5-bis((2-t-butylhydrazono)(p-tolyl)methyl)-pyrrole) that activates O2 to generate a catalytically active Cu(II)-superoxo complex via ligand-based electron transfer. Characterization using ultraviolet (UV)-visible spectroscopy, Raman isotope labeling studies, and Cu extended X-ray absorption fine structure (EXAFS) analysis confirms the assignment of an end-on κ1 superoxo complex. This Cu-O2 complex engages in a range of aerobic catalytic oxidations with substrates including alcohols and aldehydes. These results demonstrate that bioinspired Cu systems can not only model important bioinorganic intermediates but can also mediate and provide mechanistic insight into aerobic oxidative transformations.


Assuntos
Cobre , Oxigênio , Catálise , Cobre/química , Ligantes , Oxirredução , Estresse Oxidativo , Oxigênio/química
3.
J Am Chem Soc ; 143(49): 20849-20862, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34856101

RESUMO

The selective hydroxylation of aliphatic C-H bonds remains a challenging but broadly useful transformation. Nature has evolved systems that excel at this reaction, exemplified by cytochrome P450 enzymes, which use an iron-oxo intermediate to activate aliphatic C-H bonds with k1 > 1400 s-1 at 4 °C. Many synthetic catalysts have been inspired by these enzymes and are similarly proposed to use transition metal-oxo intermediates. However, most examples of well-characterized transition metal-oxo species are not capable of reacting with strong, aliphatic C-H bonds, resulting in a lack of understanding of what factors facilitate this reactivity. Here, we report the isolation and characterization of a new terminal CoIII-oxo complex, PhB(AdIm)3CoIIIO. Upon oxidation, a transient CoIV-oxo intermediate is generated that is capable of hydroxylating aliphatic C-H bonds with an extrapolated k1 for C-H activation >130 s-1 at 4 °C, comparable to values observed in cytochrome P450 enzymes. Experimental thermodynamic values and DFT analysis demonstrate that, although the initial C-H activation step in this reaction is endergonic, the overall reaction is driven by an extremely exergonic radical rebound step, similar to what has been proposed in cytochrome P450 enzymes. The rapid C-H hydroxylation reactivity displayed in this well-defined system provides insight into how hydroxylation is accomplished by biological systems and similarly potent synthetic oxidants.


Assuntos
Adamantano/análogos & derivados , Álcoois/síntese química , Complexos de Coordenação/química , Oxidantes/química , Catálise , Cobalto/química , Teoria da Densidade Funcional , Hidroxilação , Ligantes , Modelos Químicos , Oxirredução
4.
J Am Chem Soc ; 143(43): 18121-18130, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34698493

RESUMO

Enzymes exert control over the reactivity of metal centers with precise tuning of the secondary coordination sphere of active sites. One particularly elegant illustration of this principle is in the controlled delivery of proton and electron equivalents in order to activate abundant but kinetically inert oxidants such as O2 for oxidative chemistry. Chemists have drawn inspiration from biology in designing molecular systems where the secondary coordination sphere can shuttle protons or electrons to substrates. However, a biomimetic activation of O2 requires the transfer of both protons and electrons, and molecular systems where ancillary ligands are designed to provide both of these equivalents are comparatively rare. Here, we report the use of a dihydrazonopyrrole (DHP) ligand complexed to Fe to perform exactly such a biomimetic activation of O2. In the presence of O2, this complex directly generates a high spin Fe(III)-hydroperoxo intermediate which features a DHP• ligand radical via ligand-based transfer of an H atom. This system displays oxidative reactivity and ultimately releases hydrogen peroxide, providing insight on how secondary coordination sphere interactions influence the evolution of oxidizing intermediates in Fe-mediated aerobic oxidations.


Assuntos
Complexos de Coordenação/química , Oxigênio/química , Peróxidos/química , Complexos de Coordenação/síntese química , Hidrazonas/síntese química , Hidrazonas/química , Ferro/química , Ligantes , Oxirredução , Pirróis/síntese química , Pirróis/química
5.
J Am Chem Soc ; 142(24): 10824-10832, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32429663

RESUMO

Metal ligand cooperativity is a powerful strategy in transition metal chemistry. This type of mechanism for the activation of O2 is best exemplified by heme centers in biological systems. While aerobic oxidations with Fe and Cu are well precedented, Ni-based oxidations are frequently less common due to less-accessible metal-based redox couples. Some Ni enzymes utilize special ligand environments for tuning the Ni(II)/(III) redox couple such as strongly donating thiolates in Ni superoxide dismutase. A recently characterized example of a Ni-containing protein, however, suggests an alternative strategy for mediating redox chemistry with Ni by utilizing ligand-based reducing equivalents to enable oxygen binding. While this mechanism has little synthetic precedent, we show here that Ni complexes of the redox-active ligand tBu,TolDHP (tBu,TolDHP = 2,5-bis((2-t-butylhydrazono)(p-tolyl)methyl)-pyrrole) activate O2 to generate a Ni(II) superoxo complex via ligand-based electron transfer. This superoxo complex is competent for stoichiometric oxidation chemistry with alcohols and hydrocarbons. This work demonstrates that coupling ligand-based redox chemistry with functionally redox-inactive Ni centers enables oxidative transformations more commonly mediated by metals such as Fe and Cu.


Assuntos
Complexos de Coordenação/química , Níquel/química , Pirróis/química , Complexos de Coordenação/síntese química , Ligantes , Estrutura Molecular , Oxirredução , Oxigênio/química
6.
J Am Chem Soc ; 142(41): 17670-17680, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32948091

RESUMO

Organic diradicals are uncommon species that have been intensely studied for their unique properties and potential applicability in a diverse range of innovative fields. While there is a growing class of stable and well-characterized organic diradicals, there has been recent focus on how diradical character can be controlled or modulated with external stimuli. Here we demonstrate that a diiron complex bridged by the doubly oxidized ligand tetrathiafulvalene-2,3,6,7-tetrathiolate (TTFtt2-) undergoes a thermally induced Fe-centered spin-crossover which yields significant diradical character on TTFtt2-. UV-vis-near-IR, Mössbauer, NMR, and EPR spectroscopies with magnetometry, crystallography, and advanced theoretical treatments suggest that this diradical character arises from a shrinking TTFtt2- π-manifold from the Fe(II)-centered spin-crossover. The TTFtt2--centered diradical is predicted to have a singlet ground state by theory and variable temperature EPR. This unusual phenomenon demonstrates that inorganic spin transitions can be used to modulate organic diradical character.

7.
J Org Chem ; 85(20): 13256-13263, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32975945

RESUMO

A silver-catalyzed protocol was found to afford the N-formylation of amines in moderate-to-good yields. Ethylene glycol-derived, oligomeric ethers were found to function as the formylating agent, with 1,4-dioxane affording the best results. This reaction does not require the use of stoichiometric activating reagents, and avoids the use of explosive reagents or toxic gases, such as CO, as the C1 synthon. Mechanistic studies indicate a single-electron transfer-based pathway. This work highlights the ability of silver to participate in unexpected reaction pathways.

8.
Inorg Chem ; 58(14): 9057-9066, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31247828

RESUMO

A family of bis(neocuproine) complexes of Fe2+ and Co2+ have been investigated for neocuproine redox noninnocence. A series of redox isomers of M(neocuproine)2n+ (where n = 2, 1, 0 for Co and n = 2, 0 for Fe) have been synthesized and thoroughly characterized. The electronic structure of these complexes has been rigorously investigated using a variety of techniques, including X-ray absorption spectroscopy, Mössbauer spectroscopy, X-ray diffraction, electron paramagnetic resonance spectroscopy, and magnetic measurements. All of these techniques are consistent with ligand-based reduction events to generate radical neocuproine complexes. Thus, neocuproine adds to a growing family of chelating N-donor type ligands that participate in redox noninnocence and may be useful for future catalyst and reaction design.

9.
Z Anorg Allg Chem ; 647(14): 1415-1420, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36059917

RESUMO

Nature uses control of the secondary coordination sphere to facilitate an astounding variety of transformations. Similarly, synthetic chemists have found metal-ligand cooperativity to be a powerful strategy for designing complexes that can mediate challenging reactivity. In particular, this strategy has been used to facilitate two electron reactions with first row transition metals that more typically engage in one electron redox processes. While NNN pincer ligands feature prominently in this area, examples which can potentially engage in both proton and electron transfer are less common. Dihydrazonopyrrole (DHP) ligands have been isolated in a variety of redox and protonation states when complexed to Ni. However, the redox-state of this ligand scaffold is less obvious when complexed to metal centers with more accessible redox couples. Here, we synthesize a new series of Fe-DHP complexes in two distinct oxidation states. Detailed characterization supports that the redox-chemistry in this set is still primarily ligand based. Finally, these complexes exist as 5-coordinate species with an open coordination site offering the possibility of enhanced reactivity.

10.
Chem Commun (Camb) ; 57(32): 3869-3872, 2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33729221

RESUMO

Biology employs exquisite control over proton, electron, H-atom, or H2 transfer. Similar control in synthetic systems has the potential to facilitate efficient and selective catalysis. Here we report a dihydrazonopyrrole Ni complex where an H2 equivalent can be stored on the ligand periphery without metal-based redox changes and can be leveraged for catalytic hydrogenations. Kinetic and computational analysis suggests ligand hydrogenation proceeds by H2 association followed by H-H scission. This complex is an unusual example where a synthetic system can mimic biology's ability to mediate H2 transfer via secondary coordination sphere-based processes.

11.
Chem Sci ; 10(5): 1360-1367, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30809351

RESUMO

A T-shaped Ni(ii) complex [Tol,PhDHPy]Ni has been prepared and characterized. EPR spectra and DFT calculations of this complex suggest that the electronic structure is best described as a high-spin Ni(ii) center antiferromagnetically coupled with a ligand-based radical. This complex reacts with water at room temperature to generate the dimeric complex [Tol,PhDHPy]Ni(µ-OH)Ni[Tol,PhDHPyH] which has been thoroughly characterized by SXRD, NMR, IR and deuterium-labeling experiments. Addition of simple ligands such as phosphines or pyridine displaces water and demonstrates the reversibility of water activation in this system. The water activation step has been examined by kinetic studies and DFT calculations which suggest an unusual homolytic reaction via a bimetallic mechanism. The ΔH ‡, ΔS ‡ and KIE (k H/k D) of the reaction are 5.5 kcal mol-1, -23.8 cal mol-1 K-1, and 2.4(1), respectively. In addition to the reversibility of water addition, this system is capable of activating water towards net O-atom transfer to substrates such as aromatic C-H bonds and phosphines. This reactivity is facilitated by the ability of the dihydrazonopyrrole ligand to accept H-atoms and illustrates the utility of metal ligand cooperation in activating O-H bonds with high bond dissociation energies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA