Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 121, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853277

RESUMO

BACKGROUND: Platinum resistance is the primary cause of poor survival in ovarian cancer (OC) patients. Targeted therapies and biomarkers of chemoresistance are critical for the treatment of OC patients. Our previous studies identified cell surface CD55, a member of the complement regulatory proteins, drives chemoresistance and maintenance of cancer stem cells (CSCs). CSCs are implicated in tumor recurrence and metastasis in multiple cancers. METHODS: Protein localization assays including immunofluorescence and subcellular fractionation were used to identify CD55 at the cell surface and nucleus of cancer cells. Protein half-life determinations were used to compare cell surface and nuclear CD55 stability. CD55 deletion mutants were generated and introduced into cancer cells to identify the nuclear trafficking code, cisplatin sensitivity, and stem cell frequency that were assayed using in vitro and in vivo models. Detection of CD55 binding proteins was analyzed by immunoprecipitation followed by mass spectrometry. Target pathways activated by CD55 were identified by RNA sequencing. RESULTS: CD55 localizes to the nucleus of a subset of OC specimens, ascites from chemoresistant patients, and enriched in chemoresistant OC cells. We determined that nuclear CD55 is glycosylated and derived from the cell surface pool of CD55. Nuclear localization is driven by a trafficking code containing the serine/threonine (S/T) domain of CD55. Nuclear CD55 is necessary for cisplatin resistance, stemness, and cell proliferation in OC cells. CD55 S/T domain is necessary for nuclear entry and inducing chemoresistance to cisplatin in both in vitro and in vivo models. Deletion of the CD55 S/T domain is sufficient to sensitize chemoresistant OC cells to cisplatin. In the nucleus, CD55 binds and attenuates the epigenetic regulator and tumor suppressor ZMYND8 with a parallel increase in H3K27 trimethylation and members of the Polycomb Repressive Complex 2. CONCLUSIONS: For the first time, we show CD55 localizes to the nucleus in OC and promotes CSC and chemoresistance. Our studies identify a therapeutic mechanism for treating platinum resistant ovarian cancer by blocking CD55 nuclear entry.


Assuntos
Antígenos CD55 , Núcleo Celular , Cromatina , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Histonas , Células-Tronco Neoplásicas , Neoplasias Ovarianas , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Feminino , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Camundongos , Antígenos CD55/metabolismo , Antígenos CD55/genética , Linhagem Celular Tumoral , Histonas/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Metilação , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Transporte Proteico
2.
EMBO J ; 39(11): e101573, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32323871

RESUMO

High expression of 2',5'-oligoadenylate synthetase 1 (OAS1), which adds AMP residues in 2',5' linkage to a variety of substrates, is observed in many cancers as a part of the interferon-related DNA damage resistance signature (IRDS). Poly(ADP-ribose) (PAR) is rapidly synthesized from NAD+ at sites of DNA damage to facilitate repair, but excessive PAR synthesis due to extensive DNA damage results in cell death by energy depletion and/or activation of PAR-dependent programmed cell death pathways. We find that OAS1 adds AMP residues in 2',5' linkage to PAR, inhibiting its synthesis in vitro and reducing its accumulation in cells. Increased OAS1 expression substantially improves cell viability following DNA-damaging treatments that stimulate PAR synthesis during DNA repair. We conclude that high expression of OAS1 in cancer cells promotes their ability to survive DNA damage by attenuating PAR synthesis and thus preventing cell death.


Assuntos
2',5'-Oligoadenilato Sintetase/biossíntese , Dano ao DNA , Regulação Enzimológica da Expressão Gênica , Poli ADP Ribosilação , 2',5'-Oligoadenilato Sintetase/genética , Monofosfato de Adenosina/genética , Monofosfato de Adenosina/metabolismo , Morte Celular , Linhagem Celular Transformada , Humanos
3.
Blood ; 138(26): 2781-2798, 2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-34748628

RESUMO

Idiopathic aplastic anemia (IAA) is a rare autoimmune bone marrow failure (BMF) disorder initiated by a human leukocyte antigen (HLA)-restricted T-cell response to unknown antigens. As in other autoimmune disorders, the predilection for certain HLA profiles seems to represent an etiologic factor; however, the structure-function patterns involved in the self-presentation in this disease remain unclear. Herein, we analyzed the molecular landscape of HLA complexes of a cohort of 300 IAA patients and almost 3000 healthy and disease controls by deeply dissecting their genotypic configurations, functional divergence, self-antigen binding capabilities, and T-cell receptor (TCR) repertoire specificities. Specifically, analysis of the evolutionary divergence of HLA genotypes (HED) showed that IAA patients carried class II HLA molecules whose antigen-binding sites were characterized by a high level of structural homology, only partially explained by specific risk allele profiles. This pattern implies reduced HLA binding capabilities, confirmed by binding analysis of hematopoietic stem cell (HSC)-derived self-peptides. IAA phenotype was associated with the enrichment in a few amino acids at specific positions within the peptide-binding groove of DRB1 molecules, affecting the interface HLA-antigen-TCR ß and potentially constituting the basis of T-cell dysfunction and autoreactivity. When analyzing associations with clinical outcomes, low HED was associated with risk of malignant progression and worse survival, underlying reduced tumor surveillance in clearing potential neoantigens derived from mechanisms of clonal hematopoiesis. Our data shed light on the immunogenetic risk associated with IAA etiology and clonal evolution and on general pathophysiological mechanisms potentially involved in other autoimmune disorders.


Assuntos
Anemia Aplástica/genética , Genes MHC da Classe II , Antígenos HLA-D/genética , Adulto , Alelos , Estudos de Coortes , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade
4.
Proc Natl Acad Sci U S A ; 117(40): 24802-24812, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32958664

RESUMO

The oligoadenylate synthetase (OAS)-RNase L system is an IFN-inducible antiviral pathway activated by viral infection. Viral double-stranded (ds) RNA activates OAS isoforms that synthesize the second messenger 2-5A, which binds and activates the pseudokinase-endoribonuclease RNase L. In cells, OAS activation is tamped down by ADAR1, an adenosine deaminase that destabilizes dsRNA. Mutation of ADAR1 is one cause of Aicardi-Goutières syndrome (AGS), an interferonopathy in children. ADAR1 deficiency in human cells can lead to RNase L activation and subsequent cell death. To evaluate RNase L as a possible therapeutic target for AGS, we sought to identify small-molecule inhibitors of RNase L. A 500-compound library of protein kinase inhibitors was screened for modulators of RNase L activity in vitro. We identified ellagic acid (EA) as a hit with 10-fold higher selectivity against RNase L compared with its nearest paralog, IRE1. SAR analysis identified valoneic acid dilactone (VAL) as a superior inhibitor of RNase L, with 100-fold selectivity over IRE1. Mechanism-of-action analysis indicated that EA and VAL do not bind to the pseudokinase domain of RNase L despite acting as ATP competitive inhibitors of the protein kinase CK2. VAL is nontoxic and functional in cells, although with a 1,000-fold decrease in potency, as measured by RNA cleavage activity in response to treatment with dsRNA activator or by rescue of cell lethality resulting from self dsRNA induced by ADAR1 deficiency. These studies lay the foundation for understanding novel modes of regulating RNase L function using small-molecule inhibitors and avenues of therapeutic potential.


Assuntos
Adenosina Desaminase/deficiência , Doenças Autoimunes do Sistema Nervoso/enzimologia , Endorribonucleases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Malformações do Sistema Nervoso/enzimologia , Fenol/farmacologia , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Nucleotídeos de Adenina/metabolismo , Adenosina Desaminase/genética , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/fisiopatologia , Morte Celular/efeitos dos fármacos , Endorribonucleases/genética , Endorribonucleases/metabolismo , Inibidores Enzimáticos/química , Humanos , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/fisiopatologia , Oligorribonucleotídeos/metabolismo , Fenol/química , Proteínas de Ligação a RNA/genética
5.
Mol Cell ; 53(2): 221-34, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24462203

RESUMO

RNase L is an ankyrin repeat domain-containing dual endoribonuclease-pseudokinase that is activated by unusual 2,'5'-oligoadenylate (2-5A) second messengers and which impedes viral infections in higher vertebrates. Despite its importance in interferon-regulated antiviral innate immunity, relatively little is known about its precise mechanism of action. Here we present a functional characterization of 2.5 Å and 3.25 Å X-ray crystal and small-angle X-ray scattering structures of RNase L bound to a natural 2-5A activator with and without ADP or the nonhydrolysable ATP mimetic AMP-PNP. These studies reveal how recognition of 2-5A through interactions with the ankyrin repeat domain and the pseudokinase domain, together with nucleotide binding, imposes a rigid intertwined dimer configuration that is essential for RNase catalytic and antiviral functions. The involvement of the pseudokinase domain of RNase L in 2-5A sensing, nucleotide binding, dimerization, and ribonuclease functions highlights the evolutionary adaptability of the eukaryotic protein kinase fold.


Assuntos
Nucleotídeos de Adenina/química , Endorribonucleases/química , Oligorribonucleotídeos/química , Difosfato de Adenosina/química , Adenilil Imidodifosfato/química , Animais , Repetição de Anquirina , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Vírus da Encefalomiocardite , Endorribonucleases/genética , Endorribonucleases/fisiologia , Células HeLa , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Picornaviridae , Estrutura Terciária de Proteína , Espalhamento de Radiação , Relação Estrutura-Atividade , Sus scrofa
6.
Bioorg Med Chem ; 39: 116141, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33894507

RESUMO

The TET (Ten-Eleven Translocation) dioxygenase enzyme family comprising 3 members, TET1-3, play key roles in DNA demethylation. These processes regulate transcription programs that determine cell lineage, survival, proliferation, and differentiation. The impetus for our investigations described here is derived from the need to develop illuminating small molecule probes for TET enzymes with cellular activity and specificity. The studies were done so in the context of the importance of TET2 in the hematopoietic system and the preponderance of loss of function somatic TET2 mutations in myeloid diseases. We have identified that 2-hydroxy-4-methylene-pentanedicarboxylic acid 2a reversibly competes with the co-substrate α-KG in the TET2 catalytic domain and inhibits the dioxygenase activity with an IC50 = 11.0 ± 0.9 µM at 10 µM α-KG in a cell free system and binds in the TET2 catalytic domain with Kd = 0.3 ± 0.12 µM.


Assuntos
Domínio Catalítico/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Ácidos Dicarboxílicos/síntese química , Ácidos Dicarboxílicos/farmacologia , Dioxigenases/metabolismo , Sistema Livre de Células , Metilação de DNA , Ácidos Dicarboxílicos/química , Humanos , Simulação de Acoplamento Molecular , Análise Espectral/métodos , Relação Estrutura-Atividade , Células THP-1
7.
PLoS Pathog ; 14(4): e1006989, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29652922

RESUMO

The OAS/RNase L pathway is one of the best-characterized effector pathways of the IFN antiviral response. It inhibits the replication of many viruses and ultimately promotes apoptosis of infected cells, contributing to the control of virus spread. However, viruses have evolved a range of escape strategies that act against different steps in the pathway. Here we unraveled a novel escape strategy involving Theiler's murine encephalomyelitis virus (TMEV) L* protein. Previously we found that L* was the first viral protein binding directly RNase L. Our current data show that L* binds the ankyrin repeats R1 and R2 of RNase L and inhibits 2'-5' oligoadenylates (2-5A) binding to RNase L. Thereby, L* prevents dimerization and oligomerization of RNase L in response to 2-5A. Using chimeric mouse hepatitis virus (MHV) expressing TMEV L*, we showed that L* efficiently inhibits RNase L in vivo. Interestingly, those data show that L* can functionally substitute for the MHV-encoded phosphodiesterase ns2, which acts upstream of L* in the OAS/RNase L pathway, by degrading 2-5A.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Nucleotídeos de Adenina/metabolismo , Endorribonucleases/antagonistas & inibidores , Vírus da Hepatite Murina/fisiologia , Oligorribonucleotídeos/metabolismo , Theilovirus/metabolismo , Proteínas Virais/metabolismo , Animais , Antivirais/metabolismo , Endorribonucleases/fisiologia , Células HeLa , Hepatite Viral Animal/metabolismo , Hepatite Viral Animal/virologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos
9.
J Virol ; 91(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28003490

RESUMO

Viruses in the family Coronaviridae, within the order Nidovirales, are etiologic agents of a range of human and animal diseases, including both mild and severe respiratory diseases in humans. These viruses encode conserved replicase and structural proteins as well as more diverse accessory proteins, encoded in the 3' ends of their genomes, that often act as host cell antagonists. We previously showed that 2',5'-phosphodiesterases (2',5'-PDEs) encoded by the prototypical Betacoronavirus, mouse hepatitis virus (MHV), and by Middle East respiratory syndrome-associated coronavirus antagonize the oligoadenylate-RNase L (OAS-RNase L) pathway. Here we report that additional coronavirus superfamily members, including lineage A betacoronaviruses and toroviruses infecting both humans and animals, encode 2',5'-PDEs capable of antagonizing RNase L. We used a chimeric MHV system (MHVMut) in which exogenous PDEs were expressed from an MHV backbone lacking the gene for a functional NS2 protein, the endogenous RNase L antagonist. With this system, we found that 2',5'-PDEs encoded by the human coronavirus HCoV-OC43 (OC43; an agent of the common cold), human enteric coronavirus (HECoV), equine coronavirus (ECoV), and equine torovirus Berne (BEV) are enzymatically active, rescue replication of MHVMut in bone marrow-derived macrophages, and inhibit RNase L-mediated rRNA degradation in these cells. Additionally, PDEs encoded by OC43 and BEV rescue MHVMut replication and restore pathogenesis in wild-type (WT) B6 mice. This finding expands the range of viruses known to encode antagonists of the potent OAS-RNase L antiviral pathway, highlighting its importance in a range of species as well as the selective pressures exerted on viruses to antagonize it.IMPORTANCE Viruses in the family Coronaviridae include important human and animal pathogens, including the recently emerged viruses severe acute respiratory syndrome-associated coronavirus (SARS-CoV) and Middle East respiratory syndrome-associated coronavirus (MERS-CoV). We showed previously that two viruses within the genus Betacoronavirus, mouse hepatitis virus (MHV) and MERS-CoV, encode 2',5'-phosphodiesterases (2',5'-PDEs) that antagonize the OAS-RNase L pathway, and we report here that these proteins are furthermore conserved among additional coronavirus superfamily members, including lineage A betacoronaviruses and toroviruses, suggesting that they may play critical roles in pathogenesis. As there are no licensed vaccines or effective antivirals against human coronaviruses and few against those infecting animals, identifying viral proteins contributing to virulence can inform therapeutic development. Thus, this work demonstrates that a potent antagonist of host antiviral defenses is encoded by multiple and diverse viruses within the family Coronaviridae, presenting a possible broad-spectrum therapeutic target.


Assuntos
Endorribonucleases/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/enzimologia , Vírus da Hepatite Murina/enzimologia , Diester Fosfórico Hidrolases/fisiologia , Torovirus/enzimologia , Proteínas não Estruturais Virais/fisiologia , Nucleotídeos de Adenina/química , Sequência de Aminoácidos , Animais , Domínio Catalítico , Linhagem Celular , Sequência Conservada , Cricetinae , Ativação Enzimática , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligorribonucleotídeos/química , Diester Fosfórico Hidrolases/química , Proteínas não Estruturais Virais/química , Replicação Viral
10.
J Gen Virol ; 97(4): 880-886, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26757803

RESUMO

Prior studies have demonstrated that the mouse hepatitis virus (MHV) A59 strain ns2 protein is a member of the 2H phosphoesterase family and exhibits 2',5'-phosphodiesterase (PDE) activity. During the IFN antiviral response, ns2 cleaves 2',5'-oligoadenylate (2-5A), a key mediator of RNase L activation, thereby subverting the activation of RNase L and evading host innate immunity. However, the mechanism of 2-5A cleavage by ns2 remains unclear. Here, we present the crystal structure of the MHV ns2 PDE domain and demonstrate a PDE fold similar to that of the cellular protein, a kinase anchoring protein 7 central domain (AKAP7(CD)) and rotavirus VP3 carboxy-terminal domain. The structure displays a pair of strictly conserved HxT/Sx motifs and forms a deep, positively charged catalytic groove with ß-sheets and an arginine-containing loop. These findings provide insight into the structural basis for 2-5A binding of MHV ns2.


Assuntos
Endorribonucleases/química , Vírus da Hepatite Murina/química , Diester Fosfórico Hidrolases/química , Proteínas não Estruturais Virais/química , Proteínas de Ancoragem à Quinase A/química , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Motivos de Aminoácidos , Animais , Domínio Catalítico , Clonagem Molecular , Sequência Conservada , Cristalografia por Raios X , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Vírus da Hepatite Murina/enzimologia , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rotavirus/química , Homologia Estrutural de Proteína , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
11.
J Virol ; 89(13): 6633-45, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25878106

RESUMO

UNLABELLED: Synthesis of 2'-5'-oligoadenylates (2-5A) by oligoadenylate synthetase (OAS) is an important innate cellular response that limits viral replication by activating the latent cellular RNase, RNase L, to degrade single-stranded RNA. Some rotaviruses and coronaviruses antagonize the OAS/RNase L pathway through the activity of an encoded 2H phosphoesterase domain that cleaves 2-5A. These viral 2H phosphoesterases are phylogenetically related to the cellular A kinase anchoring protein 7 (AKAP7) and share a core structure and an active site that contains two well-defined HΦ(S/T)Φ (where Φ is a hydrophobic residue) motifs, but their mechanism of substrate binding is unknown. Here, we report the structures of a viral 2H phosphoesterase, the C-terminal domain (CTD) of the group A rotavirus (RVA) VP3 protein, both alone and in complex with 2-5A. The domain forms a compact fold, with a concave ß-sheet that contains the catalytic cleft, but it lacks two α-helical regions and two ß-strands observed in AKAP7 and other 2H phosphoesterases. The cocrystal structure shows significant conformational changes in the R loop upon ligand binding. Bioinformatics and biochemical analyses reveal that conserved residues and residues required for catalytic activity and substrate binding comprise the catalytic motifs and a region on one side of the binding cleft. We demonstrate that the VP3 CTD of group B rotavirus, but not that of group G, cleaves 2-5A. These findings suggest that the VP3 CTD is a streamlined version of a 2H phosphoesterase with a ligand-binding mechanism that is shared among 2H phosphodiesterases that cleave 2-5A. IMPORTANCE: The C-terminal domain (CTD) of rotavirus VP3 is a 2H phosphoesterase that cleaves 2'-5'-oligoadenylates (2-5A), potent activators of an important innate cellular antiviral pathway. 2H phosphoesterase superfamily proteins contain two conserved catalytic motifs and a proposed core structure. Here, we present structures of a viral 2H phosphoesterase, the rotavirus VP3 CTD, alone and in complex with its substrate, 2-5A. The domain lacks two α-helical regions and ß-strands present in other 2H phosphoesterases. A loop of the protein undergoes significant structural changes upon substrate binding. Together with our bioinformatics and biochemical findings, the crystal structures suggest that the RVA VP3 CTD domain is a streamlined version of a cellular enzyme that shares a ligand-binding mechanism with other 2H phosphodiesterases that cleave 2-5A but differs from those of 2H phosphodiesterases that cleave other substrates. These findings may aid in the future design of antivirals targeting viral phosphodiesterases with cleavage specificity for 2-5A.


Assuntos
Nucleotídeos de Adenina/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Exorribonucleases/química , Exorribonucleases/metabolismo , Oligorribonucleotídeos/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Ligação Proteica , Conformação Proteica , Rotavirus/enzimologia
12.
Nucleic Acids Res ; 42(8): 5202-16, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24500209

RESUMO

Ribonuclease L (RNase L) is a metal-ion-independent endoribonuclease associated with antiviral and antibacterial defense, cancer and lifespan. Despite the biological significance of RNase L, the RNAs cleaved by this enzyme are poorly defined. In this study, we used deep sequencing methods to reveal the frequency and location of RNase L cleavage sites within host and viral RNAs. To make cDNA libraries, we exploited the 2', 3'-cyclic phosphate at the end of RNA fragments produced by RNase L and other metal-ion-independent endoribonucleases. We optimized and validated 2', 3'-cyclic phosphate cDNA synthesis and Illumina sequencing methods using viral RNAs cleaved with purified RNase L, viral RNAs cleaved with purified RNase A and RNA from uninfected and poliovirus-infected HeLa cells. Using these methods, we identified (i) discrete regions of hepatitis C virus and poliovirus RNA genomes that were profoundly susceptible to RNase L and other single-strand specific endoribonucleases, (ii) RNase L-dependent and RNase L-independent cleavage sites within ribosomal RNAs (rRNAs) and (iii) 2', 3'-cyclic phosphates at the ends of 5S rRNA and U6 snRNA. Monitoring the frequency and location of metal-ion-independent endoribonuclease cleavage sites within host and viral RNAs reveals, in part, how these enzymes contribute to health and disease.


Assuntos
Endorribonucleases/metabolismo , Clivagem do RNA , RNA Viral/metabolismo , Ribonuclease Pancreático/metabolismo , Células HeLa , Hepacivirus/genética , Humanos , Poliovirus/genética , RNA Ribossômico/química , RNA Ribossômico/metabolismo , RNA Nuclear Pequeno/química , RNA Nuclear Pequeno/metabolismo , RNA Viral/química
13.
Proc Natl Acad Sci U S A ; 110(32): 13114-9, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23878220

RESUMO

Efficient and productive virus infection often requires viral countermeasures that block innate immunity. The IFN-inducible 2',5'-oligoadenylate (2-5A) synthetases (OASs) and ribonuclease (RNase) L are components of a potent host antiviral pathway. We previously showed that murine coronavirus (MHV) accessory protein ns2, a 2H phosphoesterase superfamily member, is a phosphodiesterase (PDE) that cleaves 2-5A, thereby preventing activation of RNase L. The PDE activity of ns2 is required for MHV replication in macrophages and for hepatitis. Here, we show that group A rotavirus (RVA), an important cause of acute gastroenteritis in children worldwide, encodes a similar PDE. The RVA PDE forms the carboxy-terminal domain of the minor core protein VP3 (VP3-CTD) and shares sequence and predicted structural homology with ns2, including two catalytic HxT/S motifs. Bacterially expressed VP3-CTD exhibited 2',5'-PDE activity, which cleaved 2-5A in vitro. In addition, VP3-CTD expressed transiently in mammalian cells depleted 2-5A levels induced by OAS activation with poly(rI):poly(rC), preventing RNase L activation. In the context of recombinant chimeric MHV expressing inactive ns2, VP3-CTD restored the ability of the virus to replicate efficiently in macrophages or in the livers of infected mice, whereas mutant viruses expressing inactive VP3-CTD (H718A or H798R) were attenuated. In addition, chimeric viruses expressing either active ns2 or VP3-CTD, but not nonfunctional equivalents, were able to protect ribosomal RNA from RNase L-mediated degradation. Thus, VP3-CTD is a 2',5'-PDE able to functionally substitute for ns2 in MHV infection. Remarkably, therefore, two disparate RNA viruses encode proteins with homologous 2',5'-PDEs that antagonize activation of innate immunity.


Assuntos
Imunidade Inata/imunologia , Diester Fosfórico Hidrolases/imunologia , Vírus de RNA/imunologia , Proteínas não Estruturais Virais/imunologia , 2',5'-Oligoadenilato Sintetase/imunologia , 2',5'-Oligoadenilato Sintetase/metabolismo , Nucleotídeos de Adenina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Sítios de Ligação/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Células Cultivadas , Endorribonucleases/genética , Endorribonucleases/imunologia , Endorribonucleases/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Immunoblotting , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/virologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Vírus da Hepatite Murina/imunologia , Vírus da Hepatite Murina/metabolismo , Vírus da Hepatite Murina/fisiologia , Mutação , Oligorribonucleotídeos/metabolismo , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/metabolismo , Vírus de RNA/fisiologia , Rotavirus/imunologia , Rotavirus/metabolismo , Rotavirus/fisiologia , Homologia de Sequência de Aminoácidos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
14.
PLoS Pathog ; 9(6): e1003474, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23825954

RESUMO

Theiler's virus is a neurotropic picornavirus responsible for chronic infections of the central nervous system. The establishment of a persistent infection and the subsequent demyelinating disease triggered by the virus depend on the expression of L*, a viral accessory protein encoded by an alternative open reading frame of the virus. We discovered that L* potently inhibits the interferon-inducible OAS/RNase L pathway. The antagonism of RNase L by L* was particularly prominent in macrophages where baseline oligoadenylate synthetase (OAS) and RNase L expression levels are elevated, but was detectable in fibroblasts after IFN pretreatment. L* mutations significantly affected Theiler's virus replication in primary macrophages derived from wild-type but not from RNase L-deficient mice. L* counteracted the OAS/RNase L pathway through direct interaction with the ankyrin domain of RNase L, resulting in the inhibition of this enzyme. Interestingly, RNase L inhibition was species-specific as Theiler's virus L* protein blocked murine RNase L but not human RNase L or RNase L of other mammals or birds. Direct RNase L inhibition by L* and species specificity were confirmed in an in vitro assay performed with purified proteins. These results demonstrate a novel viral mechanism to elude the antiviral OAS/RNase L pathway. By targeting the effector enzyme of this antiviral pathway, L* potently inhibits RNase L, underscoring the importance of this enzyme in innate immunity against Theiler's virus.


Assuntos
Infecções por Cardiovirus/metabolismo , Endorribonucleases/antagonistas & inibidores , Evasão da Resposta Imune/fisiologia , Imunidade Inata , Theilovirus/metabolismo , Proteínas Virais/metabolismo , Animais , Infecções por Cardiovirus/genética , Infecções por Cardiovirus/imunologia , Infecções por Cardiovirus/patologia , Linhagem Celular , Cricetinae , Endorribonucleases/genética , Endorribonucleases/imunologia , Endorribonucleases/metabolismo , Humanos , Camundongos , Camundongos Mutantes , Estrutura Terciária de Proteína , Especificidade da Espécie , Theilovirus/genética , Theilovirus/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
17.
J Immunol ; 191(5): 2637-46, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23913960

RESUMO

Interactions between cigarette smoke (CS) exposure and viral infection play an important role(s) in the pathogenesis of chronic obstructive pulmonary disease and a variety of other disorders. A variety of lines of evidence suggest that this interaction induces exaggerated inflammatory, cytokine, and tissue remodeling responses. We hypothesized that the 2'-5' oligoadenylate synthetase (OAS)/RNase L system, an innate immune antiviral pathway, plays an important role in the pathogenesis of these exaggerated responses. To test this hypothesis, we characterize the activation of 2'-5' OAS in lungs from mice exposed to CS and viral pathogen-associated molecular patterns (PAMPs)/live virus, alone and in combination. We also evaluated the inflammatory and remodeling responses induced by CS and virus/viral PAMPs in lungs from RNase L null and wild-type mice. These studies demonstrate that CS and viral PAMPs/live virus interact in a synergistic manner to stimulate the production of select OAS moieties. They also demonstrate that RNase L plays a critical role in the pathogenesis of the exaggerated inflammatory, fibrotic, emphysematous, apoptotic, TGF-ß1, and type I IFN responses induced by CS plus virus/viral PAMP in combination. These studies demonstrate that CS is an important regulator of antiviral innate immunity, highlight novel roles of RNase L in CS plus virus induced inflammation, tissue remodeling, apoptosis, and cytokine elaboration and highlight pathways that may be operative in chronic obstructive pulmonary disease and mechanistically related disorders.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Endorribonucleases/metabolismo , Inflamação/enzimologia , Infecções por Orthomyxoviridae/complicações , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Marcação In Situ das Extremidades Cortadas , Inflamação/etiologia , Inflamação/patologia , Vírus da Influenza A , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/enzimologia , Doença Pulmonar Obstrutiva Crônica/enzimologia , Doença Pulmonar Obstrutiva Crônica/patologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Proc Natl Acad Sci U S A ; 109(15): E869-78, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22315414

RESUMO

IRE1 couples endoplasmic reticulum unfolded protein load to RNA cleavage events that culminate in the sequence-specific splicing of the Xbp1 mRNA and in the regulated degradation of diverse membrane-bound mRNAs. We report on the identification of a small molecule inhibitor that attains its selectivity by forming an unusually stable Schiff base with lysine 907 in the IRE1 endonuclease domain, explained by solvent inaccessibility of the imine bond in the enzyme-inhibitor complex. The inhibitor (abbreviated 4µ8C) blocks substrate access to the active site of IRE1 and selectively inactivates both Xbp1 splicing and IRE1-mediated mRNA degradation. Surprisingly, inhibition of IRE1 endonuclease activity does not sensitize cells to the consequences of acute endoplasmic reticulum stress, but rather interferes with the expansion of secretory capacity. Thus, the chemical reactivity and sterics of a unique residue in the endonuclease active site of IRE1 can be exploited by selective inhibitors to interfere with protein secretion in pathological settings.


Assuntos
Cumarínicos/farmacologia , Endorribonucleases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Splicing de RNA , Animais , Sítios de Ligação , Cumarínicos/química , Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/antagonistas & inibidores , Humanos , Lisina/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteólise/efeitos dos fármacos , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição de Fator Regulador X , Ribonucleases/antagonistas & inibidores , Ribonucleases/metabolismo , Bases de Schiff/química , Bases de Schiff/metabolismo , Via Secretória/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a X-Box
19.
RNA ; 18(1): 88-99, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22114318

RESUMO

Activation of RNase L endonuclease activity is part of the mammalian innate immune response to viral infection. The poliovirus RNA genome contains a sequence in its protein-coding region that can act as a competitive inhibitor of RNase L. Mutation, sequence, and functional analysis of this competitive inhibitor RNA (ciRNA) revealed that its activity depends on specific sequences, showed that a loop-loop hairpin interaction forms in the ciRNA, and suggested the presence of a loop E motif. These features lead to the hypothesis that the ciRNA's function is conferred in part by a specific three-dimensional folded RNA architecture. By using a combination of biophysical, mutational, and functional studies, we have mapped features of the three-dimensional architecture of the ciRNA in its unbound form. We show that the loop-loop interaction forms in the free ciRNA and affects the overall structure, perhaps forming long-range tertiary interactions with the loop E motif. Local tight RNA-RNA backbone packing occurs in parts of the structure, but the fold appears to be less stable than many other tightly packed RNAs. This feature may allow the ciRNA to accommodate the translocation of ribosomes and polymerase across this multifunctional region of the viral RNA but also to function as an RNase L inhibitor.


Assuntos
Endorribonucleases/antagonistas & inibidores , RNA/química , Animais , Sequência de Bases , Ligação Competitiva , Endorribonucleases/química , Endorribonucleases/genética , Temperatura Alta , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , RNA/genética , Espalhamento a Baixo Ângulo , Difração de Raios X
20.
Mol Ther ; 21(9): 1749-57, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23732991

RESUMO

The use of lytic viruses to preferentially infect and eliminate cancer cells while sparing normal cells is a promising experimental therapeutic approach for treating cancer. However, the efficacy of oncolytic virotherapy is often limited by two innate immunity pathways, the protein kinase PKR and the 2'-5'-oligoadenylate (OAS)/RNase L systems, which are widely present in many but not all tumor cell types. Previously, we reported that the anticancer drug, sunitinib, an inhibitor of VEGF-R and PDGF-R, has off-target effects against both PKR and RNase L. Here we show that combining sunitinib treatments with infection by an oncolytic virus, vesicular stomatitis virus (VSV), led to the elimination of prostate, breast, and kidney malignant tumors in mice. In contrast, either virus or sunitinib alone slowed tumor progression but did not eliminate tumors. In prostate tumors excised from treated mice, sunitinib decreased levels of the phosphorylated form of translation initiation factor, eIF2-α, a substrate of PKR, by 10-fold while increasing median viral titers by 23-fold. The sunitinib/VSV regimen caused complete and sustained tumor regression in both immunodeficient and immunocompetent animals. Results indicate that transient inhibition of innate immunity with sunitinib enhances oncolytic virotherapy allowing the recovery of tumor-bearing animals.


Assuntos
Antineoplásicos/farmacologia , Imunidade Inata/efeitos dos fármacos , Indóis/farmacologia , Terapia Viral Oncolítica , Vírus Oncolíticos/fisiologia , Pirróis/farmacologia , Vesiculovirus/fisiologia , Animais , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , Linhagem Celular Tumoral , Terapia Combinada , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/metabolismo , Feminino , Indóis/administração & dosagem , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Masculino , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Vírus Oncolíticos/imunologia , Vírus Oncolíticos/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Pirróis/administração & dosagem , Sunitinibe , Vesiculovirus/genética , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA