Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 47(19): 5264-5273, 2022 Oct.
Artigo em Zh | MEDLINE | ID: mdl-36472033

RESUMO

Based on the network target approach and technology, this study proposed for the first time a novel optimization method for Chinese medicine formulae. Moreover, with Qingluo Decoction as an example, a method for the research and development of Chinese medicine, which combines scientific methodology and experience of famous doctors, was developed. Specifically, based on the composition of Qingluo Decoction, this study used the using network target for intelligent and quantitative analysis on drug actions(UNIQ) to predict the medicinals that targeted the key pathways of rheumatoid arthritis(RA) such as angiogenesis. Then, combining the experience of the first national Chinese medical master LI Ji-ren and Aihui famous Chinese medicine doctor LI Yan and Chinese medicine theory, this study developed a novel angiogenesis-targeted prescription modified Qingluo Decoction(MQLD). Afterward, the clinical efficacy and mechanism of MQLD were verified. The results showed that 27 medicinals with significant regulatory effect on angiogenesis-related key signaling pathways were identified by UNIQ, among which 6 were selected by the Chinese medicine physicians to develop the MQLD. Clinical trials demonstrated that the clinical efficacy of MQLD, in terms of either American College of Rheumatology 20% improvement and 50% improvement criteria(ACR20, ACR50) or TCM syndrome evaluation, was better than that of Qingluo Decoction. Experimental study revealed that MQLD can inhibit RA angiogenesis by acting on the vascular endothelial growth factor(VEGF) pathway, nuclear factor κB(NF-κB) pathway, inflammatory cytokine release, and immune cell regulation. Taken together, this study developed a new formula MQLD with improved clinical efficacy, precise applicable clinical settings, and authorized patent through the network target technology, thus providing a new way for the precise development of Chinese medicine and preservation of the experience of famous physicians.


Assuntos
Medicamentos de Ervas Chinesas , Médicos , Humanos , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Fator A de Crescimento do Endotélio Vascular , Prescrições
2.
Artigo em Inglês | MEDLINE | ID: mdl-35509625

RESUMO

Qingluoyin (QLY) is a representative herbal formula prescribed for hot symptom-related rheumatoid arthritis treatment. Among its derivatives, Xiaoyao-Qingluoyin (XYQLY) attracts increasing attention due to the notable clinical efficacy. In this study, we compared its effects with QLY on adjuvant-induced arthritis (AIA) in rats and partially elucidated the antirheumatic mechanism using a network pharmacology-based strategy. After continuous oral treatments, clinical outcomes were systematically evaluated by radiographic, histological, immunohistochemical, and serological analyses. Possibly altered pathways were predicted based on reported interactions between the related chemicals and proteins/genes. The obtained conclusion was further validated by experiments in vitro. QLY and XYQLY eased polyarthritis in AIA rats after repeated doses, which reflected in reduced inflammation and bone degradation and downregulated p-p65, MMP3, and TLR4 expressions in joints. Meanwhile, they restored oxidative stress (MDA, SOD, GSH, T-AOC, and NO) and inflammatory indicators (TNF-α and CO) in serum. Synovium-based immunoblotting assay revealed that QLY and XYQLY were similarly effective in downregulating MMP3 and COX-2, but XYQLY treatment exhibited notable merit in suppressing p-p65 expression. Network pharmacology analysis hinted that XYQLY should exert greater impacts on LPS signaling and the downstream. Based on results from LC-MS analysis, we treated AIA rat-derived peripheral blood mononuclear cells with either QLY or XYQLY-based chemical combinations and confirmed that XYQLY had the better potential in inhibiting TLR4/NF-κB-controlled IL-6 production. Consequently, it led to a more profound decrease in Th17 cells counts. Overall evidence demonstrated that XYQLY was especially effective in regulating innate immunity and, therefore, improved immune environment in AIA rats as a whole.

3.
Inflammation ; 44(3): 821-834, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33405021

RESUMO

Alpha 7 nicotinic acetylcholine receptor (α7nAChR) is widely distributed in the nervous and non-cholinergic immune systems. It is necessary for the cholinergic transmitter to participate in the regulation of inflammatory response and is the key element of cholinergic anti-inflammatory pathway (CAP). Because of the profound impact of CAP on the immune system, α7nAChR is considered as a potential therapeutic target for the treatment of inflammatory diseases. Available evidences confirmed that manipulation of CAP by activating α7nAChR with either endogenous acetylcholine (ACh) or cholinergic agonists can substantially alleviate inflammatory responses both in vivo and in vitro. However, the mechanism through which CAP curbs the excessive pro-inflammatory responses and maintains immune homeostasis is not fully understood. Obtained clues suggest that the crosstalk between CAP and classical inflammatory pathways is the key to elucidate the anti-inflammatory mechanism, and the impacts of CAP activation in α7nAChR-expressing immune cells are the foundation of the immunoregulatory property. In this article, we review and update the knowledge concerning the progresses of α7nAChR-based CAP, including α7nAChR properties, signal transductions, interactions with classic immune pathways, and immunoregulatory functions in different immune cells. Certain critical issues to be addressed are also highlighted. By providing a panoramic view of α7nAChR, the summarized evidences will pave the way for the development of novel anti-inflammatory reagents and strategy and inspire further researches.


Assuntos
Acetilcolina/metabolismo , Sistema Imunitário/metabolismo , Inflamação/metabolismo , Transdução de Sinais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Agonistas Colinérgicos/uso terapêutico , Humanos , Sistema Imunitário/imunologia , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/agonistas
4.
Front Pharmacol ; 12: 785586, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987400

RESUMO

A previously validated anti-rheumatic compound α-mangostin (MAN) shows significant metabolism regulatory effects. The current study aimed to clarify whether this property contributed to its inhibition on synovial angiogenesis. Male wistar rats with adjuvant-induced arthritis (AIA) were orally treated by MAN for 32 days. Afterwards, biochemical parameters and cytokines in plasma were determined by corresponding kits, and glycometabolism-related metabolites were further accurately quantified by LC-MS method. Anti-angiogenic effects of MAN were preliminarily assessed by joints based-immunohistochemical examination and matrigel plug assay. Obtained results were then validated by experiments in vitro. AIA-caused increase in circulating transforming growth factor beta, interleukin 6, hypoxia inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in blood and local HIF-1α/VEGF expression in joints was abrogated by MAN treatment, and pannus formation within matrigel plugs implanted in AIA rats was inhibited too. Scratch and transwell assays revealed the inhibitory effects of MAN on human umbilical vein endothelial cells (HUVECs) migration. Furthermore, MAN inhibited tubule formation capability of HUVECs and growth potential of rat arterial ring-derived endothelial cells in vitro. Meanwhile, MAN eased oxidative stress, and altered glucose metabolism in vivo. Glycolysis-related metabolites including glucose 6-phosphate, fructose 6-phosphate, 3-phosphoglyceric acid and phosphoenolpyruvic acid in AIA rats were decreased by MAN, while the impaired pyruvate-synthesizing capability of lactate dehydrogenase (LDH) was recovered. Consistently, MAN restored lipopolysaccharide-elicited changes on levels of glucose and LDH in HUVECs culture system, and exerted similar effects with LDH inhibitor stiripentol on glycometabolism and VEGF production as well as tubule formation capability of HUVECs. These evidences show that MAN treatment inhibited aerobic glycolysis in AIA rats, which consequently eased inflammation-related hypoxia, and hampered pathological neovascularization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA