RESUMO
BACKGROUND: Interhemispheric cooperation is one of the most prominent functional architectures of the human brain. In patients with schizophrenia, interhemispheric cooperation deficits have been reported using increasingly powerful neurobehavioural and neuroimaging measures. However, these methods rely in part on the assumption of anatomic symmetry between hemispheres. In the present study, we explored interhemispheric cooperation deficits in schizophrenia using a newly developed index, connectivity between functionally homotopic voxels (CFH), which is unbiased by hemispheric asymmetry. METHODS: Patients with schizophrenia and age- and sexmatched healthy controls underwent multimodal MRI, and whole-brain CFH maps were constructed for comparison between groups. We examined the correlations of differing CFH values between the schizophrenia and control groups using various neurotransmitter receptor and transporter densities. RESULTS: We included 86 patients with schizophrenia and 86 matched controls in our analysis. Patients with schizophrenia showed significantly lower CFH values in the frontal lobes, left postcentral gyrus and right inferior temporal gyrus, and significantly greater CFH values in the right caudate nucleus than healthy controls. Moreover, the differing CFH values in patients with schizophrenia were significantly correlated with positive symptom score and illness duration. Functional connectivity within frontal lobes was significantly reduced at the voxel cluster level compared with healthy controls. Finally, the abnormal CFH map of patients with schizophrenia was spatially associated with the densities of the dopamine D1 and D2 receptors, fluorodopa, dopamine transporter, serotonin transporter and acetylcholine transporter. CONCLUSION: Regional abnormalities in interhemispheric cooperation may contribute to the clinical symptoms of schizophrenia. These CFH abnormalities may be associated with dysfunction in neurotransmitter systems strongly implicated in schizophrenia.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância Magnética/métodos , Núcleo CaudadoRESUMO
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation technique with great potential in the treatment of Parkinson's disease (PD). This study aimed to investigate the clinical efficacy of accelerated rTMS and to understand the underlying neural mechanism. In a double-blinded way, a total of 42 patients with PD were randomized to receive real (n = 22) or sham (n = 20) continuous theta-burst stimulation (cTBS) on the left supplementary motor area (SMA) for 14 consecutive days. Patients treated with real cTBS, but not with sham cTBS, showed a significant improvement in Part III of the Unified PD Rating Scale (p < .0001). This improvement was observed as early as 1 week after the start of cTBS treatment, and maintained 8 weeks after the end of the treatment. These findings indicated that the treatment response was swift with a long-lasting effect. Imaging analyses showed that volume of the left globus pallidus (GP) increased after cTBS treatment. Furthermore, the volume change of GP was mildly correlated with symptom improvement and associated with the baseline fractional anisotropy of SMA-GP tracts. Together, these findings implicated that the accelerated cTBS could effectively alleviate motor symptoms of PD, maybe by modulating the motor circuitry involving the SMA-GP pathway.
Assuntos
Globo Pálido/patologia , Córtex Motor/fisiopatologia , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Estimulação Magnética Transcraniana , Imagem de Tensor de Difusão , Feminino , Globo Pálido/diagnóstico por imagem , Globo Pálido/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Estimulação Magnética Transcraniana/métodos , Resultado do TratamentoRESUMO
With the growing population and rapid change in the social environment, nurses in China are suffering from high rates of stress; however, the neural mechanism underlying this occupation related stress is largely unknown. In this study, mental status was determined for 81 nurses and 61 controls using the Symptom Checklist 90 (SCL-90) scale. A subgroup (n = 57) was further scanned by resting-state functional MRI with two sessions. Based on the SCL-90 scale, "somatic complaints" and "diet/sleeping" exhibited the most prominent difference between nurses and controls. This mental health change in nurses was further supported by the spatial independent component analysis on functional MRI data. First, dynamic functional connectome analysis identified two discrete connectivity configurations (States I and II). Controls had more time in the State I than II, while the nurses had more time in the State II than I. Second, nurses showed a similar static network topology as controls, but altered dynamic properties. Third, the symptom-imaging correlation analysis suggested the functional alterations in nurses as potential imaging biomarkers indicating a high risk for "diet/sleeping" problems. In summary, this study emphasized the high risk of mental deficits in nurses and explored the underlying neural mechanism using dynamic brain connectome, which provided valuable information for future psychological intervention.
Assuntos
Sintomas Comportamentais/fisiopatologia , Encéfalo/fisiopatologia , Conectoma , Rede de Modo Padrão/fisiopatologia , Rede Nervosa/fisiopatologia , Doenças Profissionais/fisiopatologia , Adulto , Sintomas Comportamentais/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Doenças Profissionais/diagnóstico por imagem , Adulto JovemRESUMO
A large proportion of patients with obsessive-compulsive disorder (OCD) respond unsatisfactorily to pharmacological and psychological treatments. An alternative novel treatment for these patients is repetitive transcranial magnetic stimulation (rTMS). This study aimed to investigate the underlying neural mechanism of rTMS treatment in OCD patients. A total of 37 patients with OCD were randomized to receive real or sham 1-Hz rTMS (14 days, 30 min/day) over the right pre-supplementary motor area (preSMA). Resting-state functional magnetic resonance imaging data were collected before and after rTMS treatment. The individualized target was defined by a personalized functional connectivity map of the subthalamic nucleus. After treatment, patients in the real group showed a better improvement in the Yale-Brown Obsessive Compulsive Scale than the sham group (F1,35 = 6.0, p = .019). To show the neural mechanism involved, we identified an "ideal target connectivity" before treatment. Leave-one-out cross-validation indicated that this connectivity pattern can significantly predict patients' symptom improvements (r = .60, p = .009). After real treatment, the average connectivity strength of the target network significantly decreased in the real but not in the sham group. This network-level change was cross-validated in three independent datasets. Altogether, these findings suggest that personalized magnetic stimulation on preSMA may alleviate obsessive-compulsive symptoms by decreasing the connectivity strength of the target network.
Assuntos
Conectoma , Córtex Motor/fisiopatologia , Rede Nervosa/fisiopatologia , Transtorno Obsessivo-Compulsivo/fisiopatologia , Transtorno Obsessivo-Compulsivo/terapia , Núcleo Subtalâmico/fisiopatologia , Estimulação Magnética Transcraniana , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Núcleo Subtalâmico/diagnóstico por imagem , Resultado do TratamentoRESUMO
Traditional repetitive transcranial magnetic stimulation can only produce a significant but weak effect on the cortex while theta burst stimulation (TBS), a patterned accelerated form of stimulation, can produce a stronger poststimulation effect, which may improve decision-making abilities. We designed a comparative assessment of the effect of intermittent TBS (iTBS), 20 Hz, in two risk decision-making tasks on healthy controls. Participants were randomized and assigned to the iTBS (n = 29), 20 Hz (n = 29), or sham (n = 29) groups. The effects of the different methods of left dorsolateral prefrontal cortex stimulation on risk decision-making functions were compared based on subjects' performance in the Game of Dice Task (GDT) and Risky Gains Task (RGT). The main indicators were positive and negative feedback utilization rates of GDT and RGT. Both iTBS and 20 Hz stimulation resulted in significant improvements upon negative feedback in the GDT, with increases in safe options and reductions in risky options; iTBS stimulation increased subjects' use of positive feedback in the GDT and RGT (all p < 0.05). Furthermore, the iTBS group had a stronger feedback risk reduction effect than the 20 Hz or sham group following RGT negative feedback (p < 0.05). Individuals would integrate positive and negative information more efficiently, leading to them making rational choices after excitatory transcranial magnetic stimulation. Moreover, iTBS has a stronger risk reduction effect following negative feedback than the 20Hz stimulation did. In summary, iTBS might have clinical value in decision promotion.
Assuntos
Tomada de Decisões/efeitos da radiação , Ritmo Teta , Estimulação Magnética Transcraniana/métodos , Humanos , Córtex Pré-FrontalRESUMO
Characterizing the properties of brain networks across mood states seen in bipolar disorder (BP) can provide a deeper insight into the mechanisms involved in this type of affective disorder. In this study, graph theoretical methods were used to examine global, modular and nodal brain network topology in the resting state using functional magnetic resonance imaging data acquired from 95 participants, including those with bipolar depression (BPD; n = 30) and bipolar mania (BPM; n = 39) and healthy control (HC) subjects (n = 26). The threshold value of the individual subjects' connectivity matrix varied from 0.15 to 0.30 with steps of 0.01. We found that: (1) at the global level, BP patients showed a significantly increased global efficiency and synchronization and a decreased path length; (2) at the nodal level, BP patients showed impaired nodal parameters, predominantly within the frontoparietal and limbic sub-network; (3) at the module level, BP patients were characterized by denser FCs (edges) between Module III (the front-parietal system) and Module V (limbic/paralimbic systems); (4) at the nodal level, the BPD and BPM groups showed state-specific differences in the orbital part of the left superior-frontal gyrus, right putamen, right parahippocampal gyrus and left fusiform gyrus. These results revealed abnormalities in topological organization in the whole brain, especially in the frontoparietal-limbic circuit in both BPD and BPM. These deficits may reflect the pathophysiological processes occurring in BP. In addition, state-specific regional nodal alterations in BP could potentially provide biomarkers of conversion across different mood states.
Assuntos
Transtorno Bipolar , Encéfalo , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Humanos , Sistema Límbico/diagnóstico por imagem , Sistema Límbico/fisiopatologia , Imageamento por Ressonância Magnética , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologiaRESUMO
Both functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) have been used to non-invasively localize the human motor functional area. These locations can be clinically used as stimulation target of TMS treatment. However, it has been reported that the finger tapping fMRI activation and TMS hotspot were not well-overlapped. The aim of the current study was to measure the distance between the finger tapping fMRI activation and the TMS hotspot, and more importantly, to compare the network difference by using resting-state fMRI. Thirty healthy participants underwent resting-state fMRI, task fMRI, and then TMS hotspot localization. We found significant difference of locations between finger tapping fMRI activation and TMS hotspot. Specifically, the finger tapping fMRI activation was more lateral than the TMS hotspot in the premotor area. The fMRI activation peak and TMS hotspot were taken as seeds for resting-state functional connectivity analyses. Compared with TMS hotspot, finger tapping fMRI activation peak showed more intensive functional connectivity with, e.g., the bilateral premotor, insula, putamen, and right globus pallidus. The findings more intensive networks of finger tapping activation than TMS hotspot suggest that TMS treatment targeting on the fMRI activation area might result in more remote effects and would be more helpful for TMS treatment on movement disorders.
Assuntos
Imageamento por Ressonância Magnética/métodos , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Adulto , Encéfalo/fisiologia , Mapeamento Encefálico , Feminino , Voluntários Saudáveis , Humanos , Masculino , Transtornos dos Movimentos/fisiopatologia , Adulto JovemRESUMO
BACKGROUND: Schizotypal traits are considered as inheritable traits and the endophenotype for schizophrenia. A common variant in the NOTCH4 gene, rs204993, has been linked with schizophrenia, but the neural underpinnings are largely unknown. METHODS: In present study, we compared the differences of brain functions between different genotypes of rs204993 and its relationship with schizotypal traits among 402 Chinese Han healthy volunteers. The brain function was evaluated with functional connectivity strength (FCS) using the resting-state functional magnetic resonance image(rs-fMRI). The schizotypal traits were measured by the schizotypal personality questionnaire (SPQ). RESULTS: Our results showed that carriers with the AA genotype showed reduced FCS in the left occipital cortex when compared with carriers with the AG and GG genotypes, and the carriers with the AG genotype showed reduced FCS in the left occipital cortex when compared with carriers with the GG genotype. The FCS values in the left occipital lobe were negatively associated with the SPQ scores and its subscale scores within the carriers with the GG genotype, but not within the carriers with AA or AG genotype. CONCLUSION: Our results suggested that the common variant in the NOTCH4 gene, rs204993, modulates the function of the occipital cortex, which may contribute to schizotypal traits. These findings provide insight for genetic effects on schizotypal traits and its potential neural substrate.
Assuntos
Esquizofrenia , Transtorno da Personalidade Esquizotípica , Genótipo , Humanos , Imageamento por Ressonância Magnética , Lobo Occipital/diagnóstico por imagem , Receptor Notch4 , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Transtorno da Personalidade Esquizotípica/diagnóstico por imagem , Transtorno da Personalidade Esquizotípica/genéticaRESUMO
Individuals with autism-like traits (ALT) belong to a subclinical group with similar social deficits as autism spectrum disorders (ASD). Their main social deficits include atypical eye contact and difficulty in understanding facial expressions, both of which are associated with an abnormality of the right posterior superior temporal sulcus (rpSTS). It is still undetermined whether it is possible to improve the social function of ALT individuals through noninvasive neural modulation. To this end, we randomly assigned ALT individuals into the real (n = 16) and sham (n = 16) stimulation groups. All subjects received five consecutive days of intermittent theta burst stimulation (iTBS) on the rpSTS. Eye tracking data and functional magnetic resonance imaging (fMRI) data were acquired on the first and sixth days. The real group showed significant improvement in emotion recognition accuracy after iTBS, but the change was not significantly larger than that in the sham group. Resting-state functional connectivity (rsFC) between the rpSTS and the left cerebellum significantly decreased in the real group than the sham group after iTBS. At baseline, rsFC in the left cerebellum was negatively correlated with emotion recognition accuracy. Our findings indicated that iTBS of the rpSTS could improve emotion perception of ALT individuals by modulating associated neural networks. This stimulation protocol could be a vital therapeutic strategy for the treatment of ASD.
Assuntos
Transtorno do Espectro Autista/psicologia , Encéfalo/diagnóstico por imagem , Emoções/fisiologia , Expressão Facial , Reconhecimento Facial/fisiologia , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Magnética Transcraniana , Adulto JovemRESUMO
Parkinson's disease (PD) is a neurodegenerative disorder with dysfunction in cortices as well as white matter (WM) tracts. While the changes to WM structure have been extensively investigated in PD, the nature of the functional changes to WM remains unknown. In this study, the regional activity and functional connectivity of WM were compared between PD patients (n = 57) and matched healthy controls (n = 52), based on multimodel magnetic resonance imaging data sets. By tract-based spatial statistical analyses of regional activity, patients showed decreased structural-functional coupling in the left corticospinal tract compared to controls. This tract also displayed abnormally increased functional connectivity within the left post-central gyrus and left putamen in PD patients. At the network level, the WM functional network showed small-worldness in both controls and PD patients, yet it was abnormally increased in the latter group. Based on the features of the WM functional connectome, previously un-evaluated individuals could be classified with fair accuracy (73%) and area under the curve of the receiver operating characteristics (75%). These neuroimaging findings provide direct evidence for WM functional changes in PD, which is crucial to understand the functional role of fiber tracts in the pathology of neural circuits.
Assuntos
Encéfalo/fisiopatologia , Vias Neurais/fisiopatologia , Doença de Parkinson/fisiopatologia , Substância Branca/fisiopatologia , Idoso , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Functional connectomes have been suggested as fingerprinting for individual identification. Accordingly, we hypothesized that subjects in the same phenotypic group have similar functional connectome features, which could help to discriminate schizophrenia (SCH) patients from healthy controls (HCs) and from depression patients. To this end, we included resting-state functional magnetic resonance imaging data of SCH, depression patients, and HCs from three centers. We first investigated the characteristics of connectome similarity between individuals, and found higher similarity between subjects belonging to the same group (i.e., SCH-SCH) than different groups (i.e., HC-SCH). These findings suggest that the average connectome within group (termed as group-specific functional connectome [GFC]) may help in individual classification. Consistently, significant accuracy (75-77%) and area under curve (81-86%) were found in discriminating SCH from HC or depression patients by GFC-based leave-one-out cross-validation. Cross-center classification further suggests a good generalizability of the GFC classification. We additionally included normal aging data (255 young and 242 old subjects with different scanning sequences) to show factors could be improved for better classification performance, and the findings emphasized the importance of increasing sample size but not temporal resolution during scanning. In conclusion, our findings suggest that the average functional connectome across subjects contained group-specific biological features and may be helpful in clinical diagnosis for schizophrenia.
Assuntos
Envelhecimento/fisiologia , Conectoma/classificação , Esquizofrenia/classificação , Esquizofrenia/fisiopatologia , Adulto , Conectoma/normas , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Esquizofrenia/diagnóstico por imagem , Sensibilidade e Especificidade , Adulto JovemRESUMO
BACKGROUND: Electroconvulsive therapy (ECT), an effective antidepressive treatment, is frequently accompanied by cognitive impairment (predominantly memory), usually transient and self-limited. The hippocampus is a key region involved in memory and emotion processing, and in particular, the anterior-posterior hippocampal subregions has been shown to be associated with emotion and memory. However, less is known about the relationship between hippocampal-subregion alterations following ECT and antidepressant effects or cognitive impairments. METHODS: Resting-state functional connectivity (RSFC) based on the seeds of hippocampal subregions were investigated in 45 pre- and post-ECT depressed patients. Structural connectivity between hippocampal subregions and corresponding functionally abnormal regions was also conducted using probabilistic tractography. Antidepressant effects and cognitive impairments were measured by the Hamilton Depressive Rating Scale (HDRS) and the Category Verbal Fluency Test (CVFT), respectively. Their relationships with hippocampal-subregions alterations were examined. RESULTS: After ECT, patients showed increased RSFC in the hippocampal emotional subregion (HIPe) with the left middle occipital gyrus (LMOG) and right medial temporal gyrus (RMTG). Decreased HDRS was associated with increased HIPe-RMTG RSFC (r = -0.316, p = 0.035) significantly and increased HIPe-LMOG RSFC at trend level (r = -0.283, p = 0.060). In contrast, the hippocampal cognitive subregion showed decreased RSFC with the bilateral angular gyrus, and was correlated with decreased CVFT (r = 0.418, p = 0.015 for left; r = 0.356, p = 0.042 for right). No significant changes were found in structural connectivity. CONCLUSION: The hippocampal-subregions functional alterations may be specially associated with the antidepressant and cognitive effects of ECT.
Assuntos
Encéfalo/fisiopatologia , Disfunção Cognitiva/etiologia , Transtorno Depressivo Maior/terapia , Eletroconvulsoterapia , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , China , Disfunção Cognitiva/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Eletroconvulsoterapia/efeitos adversos , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Escalas de Graduação Psiquiátrica , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiopatologia , Resultado do TratamentoRESUMO
Purpose To quantitatively summarize the functional connectivity (FC) feature of the corticobasal ganglia-thalamocortical (CBTC) network in patients with Parkinson disease (PD) by means of a meta-analysis with cross-validation. Materials and Methods For this prospective study, a systematic literature search in the PubMed and EMBASE databases was performed for resting-state functional magnetic resonance (MR) imaging studies of PD published between January 2000 and May 2017. Then, a coordinate-based meta-analysis was conducted by Effect Size-Signed Differential Mapping. A cross-validation analysis was performed by using an independent resting-state functional MR imaging data set that contained 25 patients with PD and 19 age-, sex-, and education-matched healthy control participants. Two-sample t test was performed on FC maps between PD and control groups. Results Thirty studies with 854 patients with PD and 831 control participants were included in this meta-analysis. The main meta-analysis found increased FC in the left pre- and postcentral gyrus in patients with PD compared with healthy control participants (z = 2.6; P < .001). The abnormality of the postcentral gyrus was further confirmed by subgroup meta-analyses on medication-naive (n = 25; z = 2.2; P < .001) and medication-off (n = 11; z = 1.5; P < .001) experiments, which suggested that the finding was unaffected by medication. The abnormality of the postcentral gyrus was cross-validated by the independent data set (t = 5.0; P < .05), which suggested a high reproducibility and generalizability. Conclusion This meta-analysis emphasizes the left postcentral gyrus as a critical region in PD, which may become a potential target for clinical intervention. © RSNA, 2018 Online supplemental material is available for this article.
Assuntos
Gânglios da Base/patologia , Mapeamento Encefálico/métodos , Córtex Cerebral/patologia , Imageamento por Ressonância Magnética/métodos , Doença de Parkinson/patologia , Tálamo/patologia , Gânglios da Base/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Humanos , Doença de Parkinson/diagnóstico por imagem , Estudos Prospectivos , Reprodutibilidade dos Testes , Tálamo/diagnóstico por imagemRESUMO
The supplementary motor area (SMA) is a key node of the motor network. Inhibitory repetitive transcranial magnetic stimulation (rTMS) of the SMA can potentially improve movement disorders. However, the aftereffects of inhibitory rTMS on brain function remain largely unknown. Using a single-blind, crossover within-subject design, we investigated the role of aftereffects with two inhibitory rTMS protocols [1800 pulses of either 1-Hz repetitive stimulation or continuous theta burst stimulation (cTBS)] on the left SMA. A total of 19 healthy volunteers participated in the rTMS sessions on 2 separate days. Firstly, short-term aftereffects were estimated at three levels (functional connectivity, local activity, and network properties) by comparing the resting-state functional magnetic resonance imaging datasets (9min) acquired before and after each rTMS session. Local activity and network properties were not significantly altered by either protocol. Functional connectivity within the SMA network was increased (in the left paracentral gyrus) by 1-Hz stimulation and decreased (in the left inferior frontal gyrus and SMA/middle cingulate cortex) by cTBS. The subsequent three-way analysis of variance (site×time×protocol) did not show a significant interaction effect or "protocol" main effect, suggesting that the two protocols share an underlying mechanism. Secondly, sliding-window analysis was used to evaluate the dynamic features of aftereffects in the ~29min after the end of stimulation. Aftereffects were maintained for a maximum of 9.8 and 6.6min after the 1-Hz and cTBS protocols, respectively. In summary, this study revealed topographical and temporal aftereffects in the SMA network following inhibitory rTMS protocols, providing valuable information for their application in future neuroscience and clinical studies.
Assuntos
Córtex Motor/fisiologia , Estimulação Magnética Transcraniana , Estudos Cross-Over , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Neuronavegação/métodos , Método Simples-Cego , Estimulação Magnética Transcraniana/métodos , Adulto JovemRESUMO
Purpose To investigate the functional connectome alterations in benign epilepsy with centrotemporal spikes with respect to the occurrence of interictal epileptic discharges (IEDs) during functional magnetic resonance (MR) imaging. Materials and Methods This prospective study was approved by the local institutional review board and was HIPAA compliant. All participants were consecutively enrolled with written informed consent. Forty-three right-handed patients were classified into IED (n = 20, 13 girls and seven boys; mean age ± standard deviation, 9.00 years ± 1.95) and non-IED (n = 23, 11 girls and 12 boys; mean age, 10.22 years ± 2.13) groups on the basis of electroencephalographic data simultaneously recorded during resting-state functional MR imaging at 3.0 T. The functional connectome features (estimated with graph theoretical analysis) in patient groups and control subjects who were matched for sex, age, and education level (n = 28, all right-handed, 13 girls and 15 boys; mean age, 10.00 years ± 2.31) were compared by using one-way analysis of variance. Results Patients with IEDs and those without IEDs showed consistently abnormal global topology in their functional networks (ie, decreased global efficiency; P < .05) relative to that of control subjects, with no differences between the two patient groups (P > .05). Decreased regional efficiency and connectivity strength were observed in the patients with IEDs and those without (mainly in the perirolandic and frontal areas) relative to control subjects (P < .05). Moreover, the altered functional features significantly correlated with clinical characteristics (ie, disease duration and age at symptom onset, P < .05). Conclusion These findings suggest that decreased global and regional efficiency are prominent functional deficits in children with benign epilepsy with centrotemporal spikes and can be readily identified with resting-state functional MR imaging, irrespective of IEDs. © RSNA, 2016 Online supplemental material is available for this article.
Assuntos
Conectoma/métodos , Epilepsia Rolândica/fisiopatologia , Adolescente , Córtex Cerebral , Criança , Estudos Transversais , Eletroencefalografia/métodos , Epilepsia Rolândica/diagnóstico , Epilepsia Rolândica/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Estudos ProspectivosRESUMO
Oxytocin (OT) and arginine vasopressin (AVP) exert robust and sexually dimorphic influences on cognition and emotion. How these hormones regulate relevant functional brain systems is not well understood. OT and AVP serum concentrations were assayed in 60 healthy individuals (36 women). Brain functional networks assessed with resting-state functional magnetic resonance imaging (rs-fMRI) were constructed with graph theory-based approaches that characterize brain networks as connected nodes. Sex differences were demonstrated in rs-fMRI. Men showed higher nodal degree (connectedness) and efficiency (information propagation capacity) in left inferior frontal gyrus (IFG) and bilateral superior temporal gyrus (STG) and higher nodal degree in left rolandic operculum. Women showed higher nodal betweenness (being part of paths between nodes) in right putamen and left inferior parietal gyrus (IPG). Higher hormone levels were associated with less intrinsic connectivity. In men, higher AVP was associated with lower nodal degree and efficiency in left IFG (pars orbitalis) and left STG and less efficiency in left IFG (pars triangularis). In women, higher AVP was associated with lower betweenness in left IPG, and higher OT was associated with lower nodal degree in left IFG (pars orbitalis). Hormones differentially correlate with brain networks that are important for emotion processing and cognition in men and women. AVP in men and OT in women may regulate orbital frontal cortex connectivity, which is important in emotion processing. Hormone associations with STG and pars triangularis in men and parietal cortex in women may account for well-established sex differences in verbal and visuospatial abilities, respectively. © 2016 Wiley Periodicals, Inc.
Assuntos
Arginina Vasopressina/sangue , Encéfalo/metabolismo , Vias Neurais/metabolismo , Ocitocina/sangue , Caracteres Sexuais , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Cognição/fisiologia , Emoções/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Descanso , Adulto JovemRESUMO
Benign epilepsy with centrotemporal spikes (BECTS) is often associated with neural circuit dysfunction, particularly during the transient active state characterized by interictal epileptiform discharges (IEDs). Little is known, however, about the functional neural circuit abnormalities in BECTS without IEDs, or if such abnormalities could be used to differentiate BECTS patients without IEDs from healthy controls (HCs) for early diagnosis. To this end, we conducted resting-state functional magnetic resonance imaging (RS-fMRI) and simultaneous Electroencephalogram (EEG) in children with BECTS (n = 43) and age-matched HC (n = 28). The simultaneous EEG recordings distinguished BECTS with IEDs (n = 20) from without IEDs (n = 23). Intrinsic brain activity was measured in all three groups using the amplitude of low frequency fluctuation at rest. Compared to HC, BECTS patients with IEDs exhibited an intrinsic activity abnormality in the thalamus, suggesting that thalamic dysfunction could contribute to IED emergence while patients without IEDs exhibited intrinsic activity abnormalities in middle frontal gyrus and superior parietal gyrus. Using multivariate pattern classification analysis, we were able to differentiate BECTS without IEDs from HCs with 88.23% accuracy. BECTS without epileptic transients can be distinguished from HC and BECTS with IEDs by unique regional abnormalities in resting brain activity. Both transient abnormalities as reflected by IEDs and chronic abnormalities as reflected by RS-fMRI may contribute to BECTS development and expression. Intrinsic brain activity and multivariate pattern classification techniques are promising tools to diagnose and differentiate BECTS syndromes. Hum Brain Mapp 36:3878-3889, 2015. © 2015 Wiley Periodicals, Inc.
Assuntos
Encéfalo/fisiopatologia , Epilepsia Rolândica/diagnóstico , Biomarcadores , Criança , Eletroencefalografia , Epilepsia/fisiopatologia , Feminino , Lobo Frontal/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/fisiopatologia , Testes Neuropsicológicos , Lobo Parietal/fisiopatologia , Reprodutibilidade dos Testes , Tálamo/fisiopatologiaRESUMO
PURPOSE: To characterize interhemispheric functional and anatomic connectivity in patients with idiopathic generalized epilepsy and generalized tonic-clonic seizures (GTCS). MATERIALS AND METHODS: This retrospective study was approved by the local institutional review board and was HIPAA compliant. All participants provided written informed consent. Resting-state functional and structural magnetic resonance images were acquired in 52 patients with GTCS and 65 healthy control subjects. The functional connectivity between bilateral homotopic voxels was calculated. Homotopic regions showing abnormal functional connectivity in patients were adopted as regions of interest for an analysis of diffusion-tensor imaging tractography. The fractional anisotropy and fiber length were compared between groups. Two-sample t test and nonparametric correlation analysis were used. RESULTS: Compared with control subjects, patients showed increased interhemispheric functional connectivity between the bilateral cuneus (P = .0008, corrected) and anterior cingulate cortex (P = .0003, corrected) and decreased functional connectivity between the bilateral olfactory cortex (P = .00005, corrected), inferior frontal gyrus (P = .00005, corrected), supramarginal gyrus (P = .0002, corrected), and temporal pole (P = .0003, corrected). Furthermore, the fiber length of the commissural fiber bundles connecting the bilateral anterior cingulate cortex (t = -2.30; P = .03, uncorrected) and the bilateral cuneus was shorter in patients than in control subjects (t = -3.19; P = .002, uncorrected). CONCLUSION: Our findings show that the bilateral anterior cingulate cortex may be critical to the pathophysiology of patients with GTCS and suggest that the corresponding commissural fiber bundle in the genu of the corpus callosum is a potential target for future surgical treatment in patients with intractable GTCS.
Assuntos
Encéfalo/anormalidades , Epilepsia Tônico-Clônica/diagnóstico , Imageamento por Ressonância Magnética/métodos , Adulto , Anticonvulsivantes/uso terapêutico , Mapeamento Encefálico/métodos , Estudos de Casos e Controles , Imagem de Tensor de Difusão , Eletroencefalografia , Epilepsia Tônico-Clônica/tratamento farmacológico , Epilepsia Tônico-Clônica/patologia , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Masculino , Estudos RetrospectivosRESUMO
BACKGROUND: Schizophrenia patients frequently present with structural and functional abnormalities of the ventral striatum (VS). METHODS: we examined basal activation state and functional connectivity (FC) in four subregions of the bilateral ventral striatum: left inferior ventral striatum (VSi_L), left superior ventral striatum(VSs_L), right inferior ventral striatum(VSi_R), and right superior ventral striatum(VSs_R). Resting-state functional magnetic resonance images were obtained from 62 schizophrenia patients (SCH), 57 bipolar disorder (BD) patients, and 26 healthy controls (HCs). RESULTS: The schizophrenia group exhibited greater fALFF in bilateral VS subregions compared to BD and HC groups as well as greater FC between the bilateral VSi and multiple brain regions, including the thalamus, putamen, posterior cingulate gyrus (PCC), frontal cortex and caudate. Moreover, the fALFF values of the bilateral ventral striatum were positively correlated with the severity of positive symptoms. We also found the functional connectivity between the bilateral inferior ventral striatum and some brain regions aforementioned were positively correlated with the severity of negative symptoms. CONCLUSION: These findings confirm a crucial contribution of ventral striatum dysfunction, especially of the bilateral VSi in schizophrenia. Functionally dissociated regions of the ventral striatum are differentially disturbed in schizophrenia.
RESUMO
The prevalence of autism spectrum disorders (ASDs) differs substantially between males and females, suggesting that sex-related neurodevelopmental factors are central to ASD pathogenesis. Numerous studies have suggested that abnormal brain specialization patterns and poor regional cooperation contribute to ASD pathogenesis, but relatively little is known about the related sex differences. Therefore, this study examined sex differences in brain functional specialization and cooperation among children with ASD. The autonomy index (AI) and connectivity between functionally homotopic voxels (CFH) derived from resting-state functional magnetic resonance imaging (rs-fMRI) were compared between 58 male and 13 female children with ASD. In addition, correlations were examined between regional CFH values showing significant sex differences and symptom scores on the autism behavior checklist (ABC) and childhood autism rating scale (CARS). Male children with ASD demonstrated significantly greater CFH in the left fusiform gyrus (FG) and right opercular part of the inferior frontal gyrus (IFGoperc) than female children with ASD. In addition, the CFH value of the left FG in male children with ASD was negatively correlated with total ABC score and subscale scores for sensory and social abilities. In contrast, no sex differences were detected in brain specialization. These regional abnormalities in interhemispheric cooperation among male children with ASD may provide clues to the neural mechanisms underlying sex differences in ASD symptomatology and prevalence. Autism spectrum disorders, sex, resting-state functional magnetic resonance imaging, cerebral specialization, interhemispheric cooperation.