RESUMO
Acute myeloid leukemia (AML) is a malignant cancer characterized by abnormal differentiation of hematopoietic stem and progenitor cells (HSPCs). While chimeric antigen receptor T (CAR-T) cell immunotherapies target AML cells, they often induce severe on-target/off-tumor toxicity by attacking normal cells expressing the same antigen. Here, we used base editors (BEs) and a prime editor (PE) to modify the epitope of CD123 on HSPCs, protecting healthy cells from CAR-T-induced cytotoxicity while maintaining their normal function. Although BE effectively edits epitopes, complex bystander products are a concern. To enhance precision, we optimized prime editing, increasing the editing efficiency from 5.9% to 78.9% in HSPCs. Epitope-modified cells were resistant to CAR-T lysis while retaining normal differentiation and function. Furthermore, BE- or PE-edited HSPCs infused into humanized mice endowed myeloid lineages with selective resistance to CAR-T immunotherapy, demonstrating a proof-of-concept strategy for treating relapsed AML.
RESUMO
Reactivating silenced γ-globin expression through the disruption of repressive regulatory domains offers a therapeutic strategy for treating ß-hemoglobinopathies. Here, we used transformer base editor (tBE), a recently developed cytosine base editor with no detectable off-target mutations, to disrupt transcription-factor-binding motifs in hematopoietic stem cells. By performing functional screening of six motifs with tBE, we found that directly disrupting the BCL11A-binding motif in HBG1/2 promoters triggered the highest γ-globin expression. Via a side-by-side comparison with other clinical and preclinical strategies using Cas9 nuclease or conventional BEs (ABE8e and hA3A-BE3), we found that tBE-mediated disruption of the BCL11A-binding motif at the HBG1/2 promoters triggered the highest fetal hemoglobin in healthy and ß-thalassemia patient hematopoietic stem/progenitor cells while exhibiting no detectable DNA or RNA off-target mutations. Durable therapeutic editing by tBE persisted in repopulating hematopoietic stem cells, demonstrating that tBE-mediated editing in HBG1/2 promoters is a safe and effective strategy for treating ß-hemoglobinopathies.
Assuntos
Edição de Genes , Hemoglobinopatias , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Sistemas CRISPR-Cas , Mutação/genética , Hemoglobinopatias/genética , Hemoglobinopatias/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Fatores de Transcrição/metabolismoRESUMO
CRISPR-Cas is a versatile genome editing technology that has been broadly applied in both basic research and translation medicine. Ever since its discovery, the bacterial derived endonucleases have been engineered to a collection of robust genome-editing tools for introducing frameshift mutations or base conversions at site-specific loci. Since the initiation of first-in-human trial in 2016, CRISPR-Cas has been tested in 57 cell therapy trials, 38 of which focusing on engineered CAR-T cells and TCR-T cells for cancer malignancies, 15 trials of engineered hematopoietic stem cells treating hemoglobinopathies, leukemia and AIDS, and 4 trials of engineered iPSCs for diabetes and cancer. Here, we aim to review the recent breakthroughs of CRISPR technology and highlight their applications in cell therapy.