Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
BMC Plant Biol ; 24(1): 277, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605351

RESUMO

BACKGROUND: The "woody clade" in Saxifragales (WCS), encompassing four woody families (Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae), is a phylogenetically recalcitrant node in the angiosperm tree of life, as the interfamilial relationships of the WCS remain contentious. Based on a comprehensive sampling of WCS genera, this study aims to recover a robust maternal backbone phylogeny of the WCS by analyzing plastid genome (plastome) sequence data using Bayesian inference (BI), maximum likelihood (ML), and maximum parsimony (MP) methods, and to explore the possible causes of the phylogenetic recalcitrance with respect to deep relationships within the WCS, in combination with molecular and fossil evidence. RESULTS: Although the four WCS families were identically resolved as monophyletic, the MP analysis recovered different tree topologies for the relationships among Altingiaceae, Cercidiphyllaceae, and Daphniphyllaceae from the ML and BI phylogenies. The fossil-calibrated plastome phylogeny showed that the WCS underwent a rapid divergence of crown groups in the early Cretaceous (between 104.79 and 100.23 Ma), leading to the origin of the stem lineage ancestors of Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, and Hamamelidaceae within a very short time span (∼4.56 Ma). Compared with the tree topology recovered in a previous study based on nuclear genome data, cytonuclear discordance regarding the interfamilial relationships of the WCS was detected. CONCLUSIONS: Molecular and fossil evidence imply that the early divergence of the WCS might have experienced radiative diversification of crown groups, extensive extinctions at the genus and species levels around the Cretaceous/Paleocene boundary, and ancient hybridization. Such evolutionarily complex events may introduce biases in topological estimations within the WCS due to incomplete lineage sorting, cytonuclear discordance, and long-branch attraction, potentially impacting the accurate reconstruction of deep relationships.


Assuntos
Genomas de Plastídeos , Saxifragales , Humanos , Filogenia , Saxifragales/genética , Fósseis , Teorema de Bayes , Plastídeos/genética
2.
BMC Plant Biol ; 24(1): 406, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38750463

RESUMO

BACKGROUND: The lifestyle transition from autotrophy to heterotrophy often leads to extensive degradation of plastomes in parasitic plants, while the evolutionary trajectories of plastome degradation associated with parasitism in hemiparasitic plants remain poorly understood. In this study, phylogeny-oriented comparative analyses were conducted to investigate whether obligate Loranthaceae stem-parasites experienced higher degrees of plastome degradation than closely related facultative root-parasites and to explore the potential evolutionary events that triggered the 'domino effect' in plastome degradation of hemiparasitic plants. RESULTS: Through phylogeny-oriented comparative analyses, the results indicate that Loranthaceae hemiparasites have undergone varying degrees of plastome degradation as they evolved towards a heterotrophic lifestyle. Compared to closely related facultative root-parasites, all obligate stem-parasites exhibited an elevated degree plastome degradation, characterized by increased downsizing, gene loss, and pseudogenization, thereby providing empirical evidence supporting the theoretical expectation that evolution from facultative parasitism to obligate parasitism may result in a higher degree of plastome degradation in hemiparasites. Along with infra-familial divergence in Loranthaceae, several lineage-specific gene loss/pseudogenization events occurred at deep nodes, whereas further independent gene loss/pseudogenization events were observed in shallow branches. CONCLUSIONS: The findings suggest that in addition to the increasing levels of nutritional reliance on host plants, cladogenesis can be considered as another pivotal evolutionary event triggering the 'domino effect' in plastome degradation of hemiparasitic plants. These findings provide new insights into the evolutionary trajectory of plastome degradation in hemiparasitic plants.


Assuntos
Loranthaceae , Filogenia , Loranthaceae/genética , Loranthaceae/fisiologia , Evolução Biológica , Plastídeos/genética , Evolução Molecular
3.
BMC Plant Biol ; 23(1): 344, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37380980

RESUMO

BACKGROUND: Paris yunnanensis (Melanthiaceae) is a traditional Chinese medicinal plant of significant pharmaceutical importance. Due to previous taxonomic confusion, a congeneric species, Paris liiana, has been mistaken for P. yunnanensis and cultivated on a large scale, leading to the mixing of commercial products (i.e., seedlings and processed rhizomes) of P. yunnanensis with those of P. liiana. This may have adverse effects on quality control in the standardization of P. yunnanensis productions. As the lack of PCR amplifiable genomic DNA within processed rhizomes is an intractable obstacle to the authentication of P. yunnanensis products using PCR-based diagnostic tools, this study aimed to develop a PCR-free method to authenticate commercial P. yunnanensis products, by applying genome skimming to generate complete plastomes and nrDNA arrays for use as the molecular tags. RESULTS: Based on a dense intraspecies sampling of P. liiana and P. yunnanensis, the robustness of the proposed authentication systems was evaluated by phylogenetic inferences and experimental authentication of commercial seedling and processed rhizome samples. The results indicate that the genetic criteria of both complete plastomes and nrDNA arrays were consistent with the species boundaries to achieve accurate discrimination of P. yunnanensis and P. liinna. Owing to its desirable accuracy and sensitivity, genome skimming can serve as an effective and sensitive tool for monitoring and controlling the trade of P. yunnanensis products. CONCLUSION: This study provides a new way to solve the long-standing problem of the molecular authentication of processed plant products due to the lack of PCR amplifiable genomic DNA. The proposed authentication system will support quality control in the standardization of P. yunnanensis products in cultivation and drug production. This study also provides molecular evidence to clarify the long-standing taxonomic confusion regarding the species delimitation of P. yunnanensis, which will contribute to the rational exploration and conservation of the species.


Assuntos
Ascomicetos , Melanthiaceae , Filogenia , Reação em Cadeia da Polimerase , Plântula/genética
4.
Ann Bot ; 131(2): 301-312, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36434782

RESUMO

BACKGROUND AND AIMS: Asparagaceae subfamily Nolinoideae is an economically important plant group, but the deep relationships and evolutionary history of the lineage remain poorly understood. Based on a large data set including 37 newly sequenced samples and publicly available plastomes, this study aims to better resolve the inter-tribal relationships of Nolinoideae, and to rigorously examine the tribe-level monophyly of Convallarieae, Ophiopogoneae and Polygonateae. METHODS: Maximum likelihood (ML) and Bayesian inference (BI) methods were used to infer phylogenetic relationships of Nolinoideae at the genus level and above. The diversification history of Nolinoideae was explored using molecular dating. KEY RESULTS: Both ML and BI analyses identically recovered five clades within Nolinoideae, respectively corresponding to Dracaeneae + Rusceae, Polygonateae + Theropogon, Ophiopogoneae, Nolineae, and Convallarieae excluding Theropogon, and most deep nodes were well supported. As Theropogon was embedded in Polygonateae, the plastome phylogeny failed to resolve Convallarieae and Polygonateae as reciprocally monophyletic. Divergence time estimation showed that the origins of most Nolinoideae genera were dated to the Miocene and Pliocene. The youthfulness of Nolinoideae genera is well represented in the three herbaceous tribes (Convallarieae, Ophiopogoneae and Polygonateae) chiefly distributed in temperate areas of the Northern Hemisphere, as the median stem ages of all 14 genera currently belonging to them were estimated at <12.37 Ma. CONCLUSIONS: This study recovered a robust backbone phylogeny, providing new insights for better understanding the evolution and classification of Nolinoideae. Compared with the deep relationships recovered by a previous study based on transcriptomic data, our data suggest that ancient hybridization or incomplete lineage sorting may have occurred in the early diversification of Nolinoideae. Our findings will provide important reference for further study of the evolutionary complexity of Nolinoideae using nuclear genomic data. The recent origin of these herbaceous genera currently belonging to Convallarieae, Ophiopogoneae and Polygonateae provides new evidence to support the hypothesis that the global expansion of temperate habitats caused by the climate cooling over the past 15 million years may have dramatically driven lineage diversification and speciation in the Northern Hemisphere temperate flora.


Assuntos
Asparagaceae , Filogenia , Asparagaceae/genética , Teorema de Bayes , Sequência de Bases , Plastídeos/genética
5.
Genomics ; 113(2): 447-455, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33370586

RESUMO

A plant parasite obligately parasitizing another plant parasite is referred to as epiparasite, which is extremely rare in angiosperms, and their complete plastome sequences have not been characterized to date. In this study, the complete plastomes of two flowering epiparasites: Phacellaria compressa and P. glomerata (Amphorogynaceae, Santalales) were sequenced. The plastomes of both species are of similar size, structure, gene content, and arrangement of genes to other hemiparasites in Santalales. Their plastomes were characterized by the functional loss of plastid-encoded NAD(P)H-dehydrogenase and infA genes, which strongly coincides with the general pattern of plastome degradation observed in Santalales hemiparasites. Our study demonstrates that the relatively higher level of nutritional reliance on the host plants and the reduced vegetative bodies of P. compressa and P. glomerata do not appear to cause any unique plastome degradation compared with their closely related hemiparasites.


Assuntos
Genomas de Plastídeos , Processos Heterotróficos , Santalaceae/genética , Animais , Evolução Molecular , Deleção de Genes , NADPH Desidrogenase/genética , Proteínas de Plantas/genética , Polimorfismo Genético , Santalaceae/metabolismo , Santalaceae/fisiologia
6.
Planta ; 253(6): 125, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34028602

RESUMO

MAIN CONCLUSION: The leafless and endophytic habitat may significantly relax the selection pressure on photosynthesis, and plastid transcription and translation, causing the loss/pseudogenization of several essential plastid-encoding genes in dwarf mistletoes. Dwarf mistletoes (Arceuthobium spp., Viscaceae) are the most destructive plant parasites to numerous conifer species worldwide. In this study, the plastid genomes (plastomes) of Arceuthobium chinense Lecomte and A. pini Hawksworth and Wiens were sequenced and characterized. Although dwarf mistletoes are hemiparasites capable of photosynthesis, their plastomes were highly degenerated, as indicated by the smallest plastome size, the lowest GC content, and relatively very few intact genes among the Santalales hemiparasites. Unexpectedly, several essential housekeeping genes (rpoA, rpoB, rpoC1, and rpoC2) and some core photosynthetic genes (psbZ and petL), as well as the rpl33 gene, that is indispensable for plants under stress conditions, were deleted or pseudogenized in the Arceuthobium plastomes. Our data suggest that the leafless and endophytic habit, which heavily relies on the coniferous hosts for nutrients and carbon requirement, may largely relax the selection pressure on photosynthesis, as well as plastid transcription and translation, thus resulting in the loss/pseudogenization of such essential plastid-encoding genes in dwarf mistletoes. Therefore, the higher level of plastome degradation in Arceuthobium species than other Santalales hemiparasites is likely correlated with the evolution of leafless and endophytic habit. A higher degree of plastome degradation in Arceuthobium. These findings provide new insights into the plastome degeneration associated with parasitism in Santalales and deepen our understanding of the biology of dwarf mistletoes.


Assuntos
Genomas de Plastídeos , Viscaceae , Fotossíntese , Plantas , Plastídeos/genética
7.
Ann Bot ; 127(5): 697-708, 2021 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-33252661

RESUMO

BACKGROUND AND AIMS: Cephalotaxus is a paleo-endemic genus in East Asia that consists of about 7-9 conifer species. Despite its great economic and ecological importance, the relationships between Cephalotaxus and related genera, as well as the interspecific relationships within Cephalotaxus, have long been controversial, resulting in contrasting taxonomic proposals in delimitation of Cephalotaxaceae and Taxaceae. Based on plastome data, this study aims to reconstruct a robust phylogeny to infer the systematic placement and the evolutionary history of Cephalotaxus. METHODS: A total of 11 plastomes, representing all species currently recognized in Cephalotaxus and two Torreya species, were sequenced and assembled. Combining these with previously published plastomes, we reconstructed a phylogeny of Cephalotaxaceae and Taxaceae with nearly full taxonomic sampling. Under a phylogenetic framework and molecular dating, the diversification history of Cephalotaxus and allied genera was explored. KEY RESULTS: Phylogenetic analyses of 81 plastid protein-coding genes recovered robust relationships between Cephalotaxus and related genera, as well as providing a well-supported resolution of interspecific relationships within Cephalotaxus, Taxus, Torreya and Amentotaxus. Divergence time estimation indicated that most extant species of these genera are relatively young, although fossil and other molecular evidence consistently show that these genera are ancient plant lineages. CONCLUSIONS: Our results justify the taxonomic proposal that recognizes Cephalotaxaceae as a monotypic family, and contribute to a clear-cut delineation between Cephalotaxaceae and Taxaceae. Given that extant species of Cephalotaxus are derived from recent divergence events associated with the establishment of monsoonal climates in East Asia and Pleistocene climatic fluctuations, they are not evolutionary relics.


Assuntos
Cephalotaxus , Taxaceae , Cephalotaxus/genética , Evolução Molecular , Ásia Oriental , Filogenia , Plastídeos
8.
BMC Plant Biol ; 19(1): 543, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805856

RESUMO

BACKGROUND: Paris (Melanthiaceae) is an economically important but taxonomically difficult genus, which is unique in angiosperms because some species have extremely large nuclear genomes. Phylogenetic relationships within Paris have long been controversial. Based on complete plastomes and nuclear ribosomal DNA (nrDNA) sequences, this study aims to reconstruct a robust phylogenetic tree and explore historical biogeography and clade diversification in the genus. RESULTS: All 29 species currently recognized in Paris were sampled. Whole plastomes and nrDNA sequences were generated by the genome skimming approach. Phylogenetic relationships were reconstructed using the maximum likelihood and Bayesian inference methods. Based on the phylogenetic framework and molecular dating, biogeographic scenarios and historical diversification of Paris were explored. Significant conflicts between plastid and nuclear datasets were identified, and the plastome tree is highly congruent with past interpretations of the morphology. Ancestral area reconstruction indicated that Paris may have originated in northeastern Asia and northern China, and has experienced multiple dispersal and vicariance events during its diversification. The rate of clade diversification has sharply accelerated since the Miocene/Pliocene boundary. CONCLUSIONS: Our results provide important insights for clarifying some of the long-standing taxonomic debates in Paris. Cytonuclear discordance may have been caused by ancient and recent hybridizations in the genus. The climatic and geological changes since the late Miocene, such as the intensification of Asian monsoon and the rapid uplift of Qinghai-Tibet Plateau, as well as the climatic fluctuations during the Pleistocene, played essential roles in driving range expansion and radiative diversification in Paris. Our findings challenge the theoretical prediction that large genome sizes may limit speciation.


Assuntos
Evolução Biológica , Genomas de Plastídeos , Melanthiaceae/genética , Filogenia , Dispersão Vegetal/genética
9.
BMC Plant Biol ; 19(1): 290, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266465

RESUMO

BACKGROUND: Saussurea DC. is one of the largest and most morphologically heterogeneous genera in Asteraceae. The relationships within Saussurea have been poorly resolved, probably due an early, rapid radiation. To examine plastome evolution and resolve backbone relationships within Saussurea, we sequenced the complete plastomes of 17 species representing all four subgenera. RESULTS: All Saussurea plastomes shared the gene content and structure of most Asteraceae plastomes. Molecular evolutionary analysis showed most of the plastid protein-coding genes have been under purifying selection. Phylogenomic analyses of 20 Saussurea plastomes that alternatively included nucleotide or amino acid sequences of all protein-coding genes, vs. the nucleotide sequence of the entire plastome, supported the monophyly of Saussurea and identified three clades within it. Three of the four traditional subgenera were recovered as paraphyletic. Seven plastome regions were identified as containing the highest nucleotide variability. CONCLUSIONS: Our analyses reveal both the structural conservatism and power of the plastome for resolving relationships in congeneric taxa. It is very likely that differences in topology among data sets is due primarily to differences in numbers of parsimony-informative characters. Our study demonstrates that the current taxonomy of Saussurea is likely based at least partly on convergent morphological character states. Greater taxon sampling will be necessary to explore character evolution and biogeography in the genus. Our results here provide helpful insight into which loci will provide the most phylogenetic signal in Saussurea and Cardueae.


Assuntos
Genomas de Plastídeos , Filogenia , Saussurea/genética , Evolução Molecular
10.
BMC Plant Biol ; 19(1): 293, 2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31272375

RESUMO

BACKGROUND: Robust phylogenies for species with giant genomes and closely related taxa can build evolutionary frameworks for investigating the origin and evolution of these genomic gigantisms. Paris japonica (Melanthiaceae) has the largest genome that has been confirmed in eukaryotes to date; however, its phylogenetic position remains unresolved. As a result, the evolutionary history of the genomic gigantisms in P. japonica remains poorly understood. RESULTS: We used next-generation sequencing to generate complete plastomes of P. japonica, P. verticillata, Trillium govanianum, Ypsilandra thibetica and Y. yunnanensis. Together with published plastomes, the infra-familial relationships in Melanthiaceae and infra-generic phylogeny in Paris were investigated, and their divergence times were calculated. The results indicated that the expansion of the ancestral genome of extant Paris and Trillium occurred approximately from 59.16 Mya to 38.21 Mya. The sister relationship between P. japonica and the section Euthyra was recovered, and they diverged around the transition of the Oligocene/Miocene (20 Mya), when the Japan Islands were separated from the continent of Asia. CONCLUSIONS: The genome size expansion in the most recent common ancestor for Paris and Trillium was most possibly a gradual process that lasted for approximately 20 million years. The divergence of P. japonica (section Kinugasa) and other taxa with thick rhizome may have been triggered by the isolation of the Japan Islands from the continent of Asia. This long-term separation, since the Oligocene/Miocene boundary, would have played an important role in the formation and evolution of the genomic gigantism in P. japonica. Moreover, our results support the taxonomic treatment of Paris as a genus rather than dividing it into three genera, but do not support the recognition of T. govanianum as the separate genus Trillidium.


Assuntos
Tamanho do Genoma , Genoma de Cloroplastos , Genoma de Planta , Melanthiaceae/genética , Cloroplastos , Evolução Molecular , Filogenia
11.
Bioorg Med Chem Lett ; 27(11): 2267-2273, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28454671

RESUMO

Eight new steroidal saponins, trillikamtosides K-R (1-8), along with three known analogues, were isolated from the whole plants of Trillium kamtschaticum. Their structures were unambiguously established by interpretation of spectroscopic data (MS and NMR) and chemical methods. Compound 1 had a rare aglycone featuring a skeleton of 16-oxaandrost-5-en-3-ol-17-one, which was reported for the first time. The isolated saponins were tested for cytotoxicities against HCT116 cells, and trillikamtoside R (8) was found to show the most cytotoxic effect with an IC50 value of 4.92µM.


Assuntos
Saponinas/isolamento & purificação , Trillium/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Células HCT116 , Humanos , Concentração Inibidora 50 , Espectroscopia de Prótons por Ressonância Magnética , Saponinas/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Esteroides/isolamento & purificação , Esteroides/farmacologia
12.
Plant Divers ; 46(2): 219-228, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38807906

RESUMO

Here, we infer the historical biogeography and evolutionary diversification of the genus Lilium. For this purpose, we used the complete plastomes of 64 currently accepted species in the genus Lilium (14 plastomes were newly sequenced) to recover the phylogenetic backbone of the genus and a time-calibrated phylogenetic framework to estimate biogeographical history scenarios and evolutionary diversification rates of Lilium. Our results suggest that ancient climatic changes and geological tectonic activities jointly shaped the distribution range and drove evolutionary radiation of Lilium, including the Middle Miocene Climate Optimum (MMCO), the late Miocene global cooling, as well as the successive uplift of the Qinghai-Tibet Plateau (QTP) and the strengthening of the monsoon climate in East Asia during the late Miocene and the Pliocene. This case study suggests that the unique geological and climatic events in the Neogene of East Asia, in particular the uplift of QTP and the enhancement of monsoonal climate, may have played an essential role in formation of uneven distribution of plant diversity in the Northern Hemisphere.

13.
iScience ; 26(4): 106515, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37070070

RESUMO

Dipteronia, now endemic to East Asia, was widely distributed in North America during the Paleogene; however, its fossil records in Asia are scarce and none are of the Neogene. Here, we report the first Neogene Dipteronia samaras from South Korea. The more complete fossil records suggest that Dipteronia possibly originated in either Asia or North America and that its two known lineages have different geographical histories. The Dipteronia sinensis lineage was established in Asia and North America in the Paleocene and reached its maximum range in the Eocene, followed by stepwise range contraction and extirpation in North America, South Korea, and southwestern China, finally becoming endemic to central China. In contrast, the Dipteronia dyeriana lineage might have been restricted to southwestern China, where it originated, indicating historical confinement. The current restricted distribution of Dipteronia possibly resulted from its evolutionary deceleration in a constantly changing environment.

14.
Acta Pharm Sin B ; 13(11): 4638-4654, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37969733

RESUMO

Sugar-sugar glycosyltransferases play important roles in constructing complex and bioactive saponins. Here, we characterized a series of UDP-glycosyltransferases responsible for biosynthesizing the branched sugar chain of bioactive steroidal saponins from a widely known medicinal plant Paris polyphylla var. yunnanensis. Among them, a 2'-O-rhamnosyltransferase and three 6'-O-glucosyltrasferases catalyzed a cascade of glycosylation to produce steroidal diglycosides and triglycosides, respectively. These UDP-glycosyltransferases showed astonishing substrate promiscuity, resulting in the generation of a panel of 24 terpenoid glycosides including 15 previously undescribed compounds. A mutant library containing 44 variants was constructed based on the identification of critical residues by molecular docking simulations and protein model alignments, and a mutant UGT91AH1Y187A with increased catalytic efficiency was obtained. The steroidal saponins exhibited remarkable antifungal activity against four widespread strains of human pathogenic fungi attributed to ergosterol-dependent damage of fungal cell membranes, and 2'-O-rhamnosylation appeared to correlate with strong antifungal effects. The findings elucidated the biosynthetic machinery for their production of steroidal saponins and revealed their potential as new antifungal agents.

15.
Am J Bot ; 99(8): e320-2, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22837412

RESUMO

PREMISE OF THE STUDY: Tetracentron sinense (Trochodendraceae) is a Tertiary relict endemic to East Asia. Microsatellite markers were developed and characterized to investigate the population genetics of the species. METHODS AND RESULTS: Microsatellite markers were isolated from the genome of T. sinense using the protocol of Fast Isolation by AFLP of Sequences COntaining repeats (FIASCO). Eight polymorphic microsatellite markers were assessed in 44 samples collected from three wild populations. The number of alleles observed for each locus ranged from two to five. The observed and expected heterozygosities ranged from 0.0000 to 0.9375 and 0.0000 to 0.7681, respectively. CONCLUSIONS: The microsatellite markers will be helpful in further studies of the population genetics and phylogeography of T. sinense.


Assuntos
Primers do DNA/genética , Magnoliopsida/genética , Repetições de Microssatélites/genética , Polimorfismo Genético , Alelos , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Sequência de Bases , DNA de Plantas/genética , Loci Gênicos , Marcadores Genéticos , Genética Populacional , Magnoliopsida/classificação , Dados de Sequência Molecular , Folhas de Planta/classificação , Folhas de Planta/genética , Análise de Sequência de DNA , Especificidade da Espécie
16.
Am J Bot ; 99(3): e108-10, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22358040

RESUMO

PREMISE OF THE STUDY: Microsatellite markers were developed for the dove tree, Davidia involucrata (Cornaceae), a Tertiary relict currently endemic to China, to investigate its population genetics and phylogeography. METHODS AND RESULTS: Using the Fast Isolation by AFLP of Sequences Containing repeats (FIASCO) protocol, nine polymorphic microsatellite loci were identified and screened in 44 individuals from three wild populations of D. involucrata. The number of alleles per locus ranged from two to three, while the observed heterozygosity and expected heterozygosity ranged from 0.0000 to 0.6000 and from 0.0000 to 0.6323, respectively. CONCLUSIONS: These new microsatellite loci will facilitate further studies of the population genetics and phylogeography of D. involucrata, as well as of the evolutionary history of the plant and other Tertiary relicts endemic to East Asia.


Assuntos
Cornaceae/genética , Repetições de Microssatélites/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Demografia
17.
Steroids ; 177: 108949, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896125

RESUMO

The species of Paris genus is a prolific source of structurally diverse steroidal saponins responsible for multivarious biological properties. The first phytochemical investigation on the steroidal saponin constituents from the rhizomes of Paris vaniotii Lévl. led to the discovery and structural characterization of four new spirostanol saponins, named parisvaniosides A-D (1-4), and one new furostanol glycoside, named parisvanioside E (5), along with eleven known analogues (6-16). Their structures were unambiguously established on the basis of extensive spectroscopic analysis and comparison with the reported spectroscopic data. Compound 1 is a rare spirostanol saponin sharing with a C-9/C-11 double bond and a peroxy group located between C-5 and C-8 of the aglycone, whereas 3 and 4 are unusual C-27 steroidal sapoins with hydroxyl/methoxyl at both C-5 and C-6. Furthermore, 5 is the first furostanol saponin with a unique aglycone featuring two trisubstituted double bonds in ring B. All isolated saponins were evaluated for their anti-inflammatory effects on a lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production model in RAW 264.7 macrophages.


Assuntos
Anti-Inflamatórios/farmacologia , Liliaceae/química , Saponinas/farmacologia , Esteroides/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Relação Dose-Resposta a Droga , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Conformação Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Células RAW 264.7 , Saponinas/química , Saponinas/isolamento & purificação , Esteroides/química , Esteroides/isolamento & purificação , Relação Estrutura-Atividade
18.
Front Plant Sci ; 13: 832034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444671

RESUMO

Paris L. section Axiparis H. Li (Melanthiaceae) is a taxonomically perplexing taxon with considerable confusion regarding species delimitation. Based on the analyses of morphology and geographic distribution of each species currently recognized in the taxon, we propose a revision scheme that reduces the number of species in P. sect. Axiparis from nine to two. To verify this taxonomic proposal, we employed a genome skimming approach to recover the plastid genomes (plastomes) and nuclear ribosomal DNA (nrDNA) regions of 51 individual plants across the nine described species of P. sect. Axiparis by sampling multiple accessions per species. The species boundaries within P. sect. Axiparis were explored using phylogenetic inference and three different sequence-based species delimitation methods (ABGD, mPTP, and SDP). The mutually reinforcing results indicate that there are two species-level taxonomic units in P. sect. Axiparis (Paris forrestii s.l. and P. vaniotii s.l.) that exhibit morphological uniqueness, non-overlapping distribution, genetic distinctiveness, and potential reproductive isolation, providing strong support to the proposed species delimitation scheme. This study confirms that previous morphology-based taxonomy overemphasized intraspecific and minor morphological differences to delineate species boundaries, therefore resulting in an overestimation of the true species diversity of P. sect. Axiparis. The findings clarify species limits and will facilitate robust taxonomic revision in P. sect. Axiparis.

19.
Fitoterapia ; 158: 105174, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35296434

RESUMO

Five new cholestane glycosides, named parisfargosides A-E (1-5), were isolated from the rhizomes of Paris fargesii. Their structures were elucidated on the basis of UV, HR-ESI-MS, 1D and 2D NMR data as well as chemical methods. The structures of all compounds contained α, ß-unsaturated ketone unit. Compounds 3-5 possessed a 16,23-cyclocholest skeleton with 6/6/6/5/5 condensed ring, and the absolute configurations of C-16 and C-23 were confirmed according to ROESY spectra with pyridine­d5 and DMSO­d6 as solvents. In addition, the platelet aggregation activity and cytotoxic activity against five human cancer cell lines (HL-60, A549, SMMC-7721, MDA-MB-231, and SW480) of compounds 1-5 were evaluated.


Assuntos
Colestanos , Liliaceae , Colestanos/farmacologia , Glicosídeos/química , Humanos , Estrutura Molecular , Rizoma/química
20.
Am J Bot ; 98(6): e161-3, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21653506

RESUMO

PREMISE OF THE STUDY: Fosbergia shweliensis (Anth.) Tirveng. & Sastre (Rubiaceae) is a potentially endangered tree endemic to China. Microsatellite markers were developed to investigate population genetics of this plant. METHODS AND RESULTS: Ten polymorphic microsatellite loci were identified and screened in 32 individuals from four wild populations of F. shweliensis. Alleles numbered 2 to 5, and their levels of observed heterozygosity and expected heterozygosity ranged from 0.0564 to 0.7214 and from 0.2794 to 0.7912, respectively. CONCLUSIONS: These new microsatellite loci will facilitate further studies of the population genetics of F. shweliensis, allowing us to design reasonable conservation and management strategies.


Assuntos
Espécies em Perigo de Extinção , Loci Gênicos/genética , Técnicas Genéticas , Repetições de Microssatélites/genética , Polimorfismo Genético , Rubiaceae/genética , Árvores/genética , Primers do DNA/genética , Ecossistema , Flores/anatomia & histologia , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA