Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 31(9): 15204-15213, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157367

RESUMO

We calculate the Casimir interaction between isotropic plates (gold or graphene) and black phosphorus (BP) sheets with Lifshitz theory. It is found that the Casimir force with BP sheets is of the order of α times the perfect metal limit, and α is the fine structure constant. Strong anisotropy of the BP conductivity gives rise to a difference in the Casimir force contribution between the two principal axis. Furthermore, increasing the doping concentration both in BP sheets and graphene sheets can enhance the Casimir force. Moreover, introducing substrate and increased temperature can also enhance the Casimir force, by this way we reveal that the Casimir interaction can be doubled. The controllable Casimir force opens a new avenue for designing next generation devices in micro- and nano-electromechanical systems.

2.
Nanotechnology ; 34(16)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36669198

RESUMO

Flexible three-dimensional interconnected carbon nanotubes on the carbon cloth (3D-CNTs/CC) were obtained through simple magnesium reduction reactions. According to the Nernst equation, the cell voltage based on these pure carbon electrodes without any additives could reach 1.5 V due to the higher di-hydrogen evolution over potential in neutral 3.5 M LiCl electrolytes. In order to improve the electrochemical performance of the electrodes, 3D-CNTs/CC electrodes covered with polyaniline barrier layer (3D-PANI/CNTs/CC) were prepared byin situelectropolymerization using interfacial engineering method. The assembled symmetric supercapacitors display a broadened voltage of 1.8 V, high areal capacitance of 380 mF cm-2, outstanding areal energy density of 85.5µWh cm-2and 84% of its initial capacitance after 20 000 charge-discharge cycles. This work demonstrated that the interface engineering strategy provides a promising way to improve the energy density of carbon-based aqueous supercapacitors by widening the voltage and boosting the capacitance simultaneously.

3.
Nanotechnology ; 33(7)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34753121

RESUMO

We successfully designed and prepared hierarchical Ni3S2nanorod@nanosheet arrays on three-dimensional Ni foam via facile hydrothermal sulfuration. We conducted a series of time- and temperature-dependent experiments to determine the Ostwald ripening process of hierarchical Ni3S2nanorod@nanosheet arrays. The rationally hierarchical architecture creates an excellent supercapacitor electrode for Ni3S2nanorod@nanosheet arrays. The areal capacitance of this array reaches 5.5 F cm-2at 2 mA cm-2, which is much higher than that of Ni3S2nanosheet arrays (1.5 F cm-2). The corresponding asymmetric supercapacitor exhibits a wide potential window of 1.6 V and energy density up to 1.0 Wh cm-2when the proposed array is utilized as the positive electrode with activated carbon as the negative electrode. This electrochemical performance enhancement is attributable to the hierarchical structure and synergistic cooperation of macroporous Ni foam and well-aligned Ni3S2nanorod@nanosheet arrays. Our results represent a promising approach to the preparation of hierarchical nanorod@nanosheet arrays as high-performing electrochemical capacitors.

4.
Opt Express ; 27(25): 36790-36798, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31873451

RESUMO

Understanding energy transfer via near-field thermal radiation is essential for applications such as near-field imaging, thermophotovoltaics and thermal circuit devices. Evanescent waves and photon tunneling are responsible for the near-field energy transfer. In bulk noble metals, however, surface plasmons do not contribute efficiently to the near-field energy transfer because of the mismatch of wavelength. In this paper, a giant near-field radiative heat transfer rate that is orders-of-magnitude greater than the blackbody limit between two ultrathin metallic films is demonstrated at nanoscale separations. Moreover, different physical origins for near-field thermal radiation transfer for thick and thin metallic films are clarified, and the radiative heat transfer enhancement in ultrathin metallic films is proved to come from the excitation of surface plasmons. Meanwhile, because of the inevitable high sheet resistance of ultrathin metal films, the heat transfer coefficient is 4600 times greater than the Planckian limit for the separation of 10 nm in ultrathin metallic films, which is the same order or even greater than that in other 2D materials with low carrier density. Our work shows that ultrathin metallic films are excellent materials for radiative heat transfer, which may find promising applications in thermal nano-devices and thermal engineering.

5.
Opt Lett ; 41(2): 336-9, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26766708

RESUMO

We report on the liquid crystal (LC) alignment induced by sparse polymer ribbons fabricated by the two-photon polymerization-based direct laser writing method. Each ribbon is fabricated by a single scan of the laser through the photoresist and possesses surface relief gratings on both sides. The relief gratings are caused by the optical interference between the incident and reflected laser beams. With the aid of these relief gratings, LC molecules can be well aligned along the selected direction of the ribbons. LC cells with the Z-shaped and checkerboard-type microstructures are constructed based on the sparse out-of-plane polymeric ribbons. Our results show that with such polymer ribbons a compartmentalized LC alignment in the arbitrary microstructures can be realized.

6.
Artigo em Inglês | MEDLINE | ID: mdl-25204263

RESUMO

The self-assembled nanostructures of a high-molecular-weight rod-coil block copolymer, poly(styrene-block-(2,5-bis[4-methoxyphenyl]oxycarbonyl)styrene) (PS-b-PMPCS), in p-xylene are studied. The cylindrical micelles, long segmental cylindrical micelle associates, spherical micelles, and spherical micelle associates are observed with increased copolymer concentration. The high molecular weight of PS leads to the entanglement between PS chains from different micelles, which is the force for supramolecular interactions. Short cylindrical micelles are connected end-to-end via this supramolecular chemistry to form long segmental cylindrical micelle associates, analogue to the condensation polymerization process, with direction and saturation. On the other hand, spherical micelles assemble via supramolecular chemistry to form spherical micelle associates, yet without any direction due to their isotropic properties.

7.
Foods ; 10(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34945575

RESUMO

The functional and sensory properties of food emulsion are thought to be complicated and influenced by many factors, such as the emulsifier, oil/fat mass fraction, and size of oil/fat droplets. In addition, the perceived texture of food emulsion during oral processing is mainly dominated by its rheological and tribological responses. This study investigated the effect of droplet size distribution as well as the content of oil droplets on the lubrication and sensory properties of o/w emulsion systems. Friction curves for reconstituted milk samples (composition: skimmed milk and milk cream) and Casein sodium salt (hereinafter referred to as CSS) stabilized model emulsions (olive oil as oil phase) were obtained using a soft texture analyzer tribometer with a three ball-on-disc setup combined with a soft surfaces (PDMS) tribology system. Sensory discrimination was conducted by 22 participants using an intensity scoring method. Stribeck curve analyses showed that, for reconstituted milk samples with similar rheological properties, increasing the volume fraction of oil/fat droplets in the size range of 1-10 µm will significantly enhance lubrication, while for CSS-stabilized emulsions, the size effect of oil/fat droplets reduced to around 1 µm. Surprisingly, once the size of oil/fat droplets of both systems reached nano size (d90 = 0.3 µm), increasing the oil/fat content gave no further enhancement, and the friction coefficient showed no significant difference (p > 0.05). Results from sensory analysis show that consumers are capable of discriminating emulsions, which vary in oil/fat droplet size and in oil/fat content (p < 0.01). However, it appeared that the discrimination capability of the panelist was significantly reduced for emulsions containing nano-sized droplets.

8.
J Phys Condens Matter ; 32(41): 415607, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32575090

RESUMO

Systematic ac susceptibility measurements have been carried out to study the vortex dynamics in CaKFe4As4 and Ba0.6K0.4Fe2As2 single crystals under various temperatures, dc magnetic fields, ac field frequencies and amplitudes. The field-temperature phase diagrams were shown, and the characteristics of irreversibility line were also derived. The specific expressions of activation energy on the parameters of temperature (T), current density (J), and dc magnetic field (H) are obtained according to these data. The results indicate that both superconductors have similar functional expressions of activation energy and flux pinning behaviors. Though both CaKFe4As4 and Ba0.6K0.4Fe2As2 superconductors exhibit very strong flux pinning ability, the vortex pinning potential in CaKFe4As4 is slightly smaller than that in Ba0.6K0.4Fe2As2, which may result from its distorted FeAs4-tetrahedron in CaKFe4As4. The depinning critical current densities at the limit of low temperature and low field were also extrapolated, yielding the corresponding values of J c0(0) ∼ 1.0 × 108 and 2.2 × 108 A cm-2 for CaKFe4As4 and Ba0.6K0.4Fe2As2 superconductors, respectively, which suggest potential applications.

9.
ACS Macro Lett ; 8(12): 1564-1569, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35619391

RESUMO

Typical cyclic diblock polymers are synthesized from their linear precursors via the ring-closure strategy in dilute conditions. Here we demonstrate a pseudo-high-dilution condition strategy for the efficient synthesis of cyclic rod-coil diblock copolymer from its linear precursor in selective solvents. The critical association concentration (CAC) of linear precursor is used for the control of unimer concentration during cyclization, while high copolymer synthetic concentrations are achieved via the dynamic equilibrium between unimers and micelles. The effects of CAC and micelle concentration on cyclization yield are studied and pure cyclic rod-coil diblock copolymer was obtained after azide resin treatment. Property investigations show the cyclic rod-coil copolymer has a larger second virial coefficient than its linear counterpart and self-assembles in selective solvents to form larger but looser spherical micelles due to its constraint topological structure.

10.
ACS Appl Mater Interfaces ; 6(6): 4498-513, 2014 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-24588095

RESUMO

A type of thermosensitive ionic microgel was successfully prepared via the simultaneous quaternized cross-linking reaction during the surfactant-free emulsion copolymerization of N-isopropylacrylamide (NIPAm) as the main monomer and 1-vinylimidazole or 4-vinylpyridine as the comonomer. 1,4-Dibromobutane and 1,6-dibromohexane were used as the halogenated compounds to quaternize the tertiary amine in the comonomer, leading to the formation of a cross-linking network and thermosensitive ionic microgels. The sizes, morphologies, and properties of the obtained ionic microgels were systematically investigated by using transmission electron microscopy (TEM), dynamic and static light scattering (DLS and SLS), electrophoretic light scattering (ELS), thermogravimetric analyses (TGA), and UV-visible spectroscopy. The obtained ionic microgels were spherical in shape with narrow size distribution. These ionic microgels exhibited thermosensitive behavior and a unique feature of poly(ionic liquid) in aqueous solutions, of which the counteranions of the microgels could be changed by anion exchange reaction with BF4K or lithium trifluoromethyl sulfonate (PFM-Li). After the anion exchange reaction, the ionic microgels were stable in aqueous solution and could be well dispersed in the solvents with different polarities, depending on the type of counteranion. The sizes and thermosensitive behavior of the ionic microgels could be well tuned by controlling the quaternization extent, the type of comonomer, halogenated compounds, and counteranions. The ionic microgels showed superior swelling properties in aqueous solution. Furthermore, these ionic microgels also showed capabilities to encapsulate and release the anionic dyes, like methyl orange, in aqueous solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA