Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(26): e2311343, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38236167

RESUMO

Although lithium-sulfur (Li-S) batteries have broad market prospects due to their high theoretical energy density and potential cost-effectiveness, the practical applications still face serious shuttle effects of polysulfides (LiPSs) and slow redox reactions. Therefore, in this paper, cobalt nitride nanoparticles encapsulated in nitrogen-doped carbon nanotube (CoN@NCNT) are prepared as a functional layer for the separator of high-performance Li-S batteries. Carbon nanotubes with large specific surface areas not only promote the transport of ions and electrons but also weaken the migration of LiPSs and confine the dissolution of LiPSs in electrolytes. The lithiophilic heteroatom N adsorbs LiPSs by strong chemical adsorption, and the CoN particles with high catalytic activity greatly improve the kinetics of the conversion between LiPSs and Li2S2/Li2S during the charge-discharge process. Due to these advantages, the battery with CoN@NCNT modified separator has superior rate performance (initial discharge capacity of 834.7 mAh g-1 after activation at 1 C) and excellent cycle performance (capacity remains 729.7 mAh g-1 after 200 cycles at 0.2 C). This work proposes a strategy that can give the separator a strong ability to confinement-adsorption-catalysis of LiPSs in order to provide more possibilities for the development of Li-S batteries.

2.
Nanotechnology ; 28(47): 475601, 2017 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-28930102

RESUMO

In order to confirm the key role of Ar+ ion bombardment in the growth feature of nanostructured carbon materials (NCMs), here we report a novel strategy to create different Ar+ ion states in situ in plasma enhanced chemical vapor deposition (PECVD) by separating catalyst film from the substrate. Different bombardment environments on either side of the catalyst film were created simultaneously to achieve multi-layered structural NCMs. Results showed that Ar+ ion bombardment is crucial and complex for the growth of NCMs. Firstly, Ar+ ion bombardment has both positive and negative effects on carbon nanotubes (CNTs). On one hand, Ar+ ions can break up the graphic structure of CNTs and suppress thin CNT nucleation and growth. On the other hand, Ar+ ion bombardment can remove redundant carbon layers on the surface of large catalyst particles which is essential for thick CNTs. As a result, the diameter of the CNTs depends on the Ar+ ion state. As for vertically oriented few-layer graphene (VFG), Ar+ ions are essential and can even convert the CNTs into VFG. Therefore, by combining with the catalyst separation method, specific or multi-layered structural NCMs can be obtained by PECVD only by changing the intensity of Ar+ ion bombardment, and these special NCMs are promising in many fields.

3.
J Colloid Interface Sci ; 659: 974-983, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38219315

RESUMO

Yolk-shell-structured transition metal sulfides (TMSs)/carbon nanocomposites are highly desirable in advanced energy storage system, such as sodium-ion batteries (SIBs) and supercapacitors (SCs). Nevertheless, practical applications are still prevented by the loose attachment of TMSs with carbon caused by conversion stress, the aggregation of TMSs nanoparticles and the sluggish ion transport caused by high crystallinity of carbon. Here, the disperse hollow Co9S8 nanoparticles encapsulated into N,S-codoped carbon nanotubes (CNTs) with poor crystallinity through CoNC bond was synthesized (CS-NSCNT) to overcome the above obstacles. The designed CS-NSCNT can provide the short diffusion path and prevent the huge volume expansion of conversion reaction. Moreover, the established CoNC bond endows the strong interaction and regulates the electronic structure thus promote the stability and rate performance effectively. The CS-NSCNT SCs's electrode delivers a high specific capacitance of 1150 F g-1 at 1 A g-1, with a high cycling life stability and rate performance. For SIBs, the CS-NSCNT cathode demonstrates an initial reversible capacity of 475 mAh g-1 at 0.1 A g-1 and an excellent rate performance with a capacity retention of 53 % at 10 A g-1. This work may satisfy the long-stability, high-capacitance/capacity, high-power/energy density application requirements of future applications.

4.
J Colloid Interface Sci ; 582(Pt B): 459-466, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32911394

RESUMO

Integrating carbon-coating and nanostructuring has been considered as the most promising strategy to accommodate the dramatic volume expansion represented by high-capacity antimony (Sb) upon sodiation. Suitable coating source and synthetic strategy that are both economical and strong are yet to be explored. In this regard, by using renewable bio-oil as carbon source and self-wrapping precursor, robust Sb@C composite anode with Sb nanoparticles homogeneously impregnated into the cross-linked 2D ultrathin carbon nanosheets is developed via a facile NaCl template-assisted self-assembly and followed carbothermal reduction method. Such judiciously crafted interconnected macroporous framework can mitigate of mechanical stress and alleviate the volume change of inner Sb, guaranteeing high-performance sodium-ion battery anode. At a current density of 0.1 A g-1, ultrahigh reversible capacity of 520 mAh g-1 can be achieved. Notably, a stable capacity of 391 mAh g-1 is even retained after 500 cycles at 1 A g-1. Such a facile and cost-effective synthetic method is promising for high-performance sodium-ion batteries.

5.
Dalton Trans ; 50(24): 8476-8486, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34047737

RESUMO

The design of microstructures and the optimum selection of electrode materials have substantial effects on the electrochemical performances of supercapacitors. A core-shell structured CuCo2S4@Ni(OH)2 electrode material was designed, with CuCo2S4 nanotubes as the core wrapped by interlaced Ni(OH)2 nano-sheets as the shell. The hydrothermal and electro-deposition processes were adopted to synthesize CuCo2S4@Ni(OH)2 materials. The CuCo2S4 nanotubes can both provide specific capacitance and act as a "superhighway" for electrons due to their highly conductive skeleton structure. The Ni(OH)2 nano-sheets will boost the electrochemically active sites and enhance the specific surface area. Meanwhile, the mutually restricted core-shell CuCo2S4@Ni(OH)2 electrode could regulate the volume deformation to improve its stability. The CuCo2S4@Ni(OH)2 electrode had a maximum specific capacitance of 2668.4 F g-1 at a current density of 1 A g-1 and a superior cycling stability of 90.3% after 10 000 cycles. Moreover, a CuCo2S4@Ni(OH)2//active carbon asymmetric supercapacitor with a maximum energy density of 44 W h kg-1 was assembled, suggesting that CuCo2S4@Ni(OH)2 is a successful binder-free electrode material for high performance supercapacitors.

6.
J Colloid Interface Sci ; 560: 122-129, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31655402

RESUMO

Vanadium nitride (VN) with high conductivity exhibits the potential promising as anode materials for supercapacitors, but VN suffered the obvious performance fading due to the dissolution of VN in aqueous electrolyte. In this work, we solve these problems through realizing 3D structural VN microsheets shelled with N-doped carbon layer (VN@NC) by introducing melamine as nitrogen source and PVP as carbon source. The as-prepared VN@NC electrode display high capacitance of 368 F g-1 and good rate property. A solid-state asymmetric supercapacitor (ASC) with NiCo2O4 nanowires as cathode materials and VN@NC as anode materials was fabricated. The ASC device exhibits the high energy density of 65.3 W h kg-1, and good cycling stability (92% capacitance retention) after 4000 cycles. Moreover, the ASC device shows good mechanical flexibility with negligible capacitance loss after 1000 bending cycles.

7.
Dalton Trans ; 49(1): 196-202, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31807736

RESUMO

Rational design of self-supported electrode materials is important to develop high-performance supercapacitors. Herein, a free-standing MnCo2S4@CoNi LDH (MCS@CN LDH) core-shell heterostructure is successfully prepared on Ni foam using the hydrothermal reaction and electrodeposition. In this architecture, the inner MnCo2S4 nanotube provides an ultra-high electrical conductivity and the CoNi LDH nanosheets can offer more electrochemical active sites for better faradaic reactions. Moreover, the core-shell heterostructure can also maintain the structural integrity during the processes of continuous charge/discharge. The MCS@CN LDH electrode displays a satisfactory specific capacitance of 1206 C g-1 and excellent cycling performance with ∼92% retention after 10 000 cycles. In addition, an asymmetric supercapacitor (ASC), in which MCS@CN LDH and N-doped rGO are used as the positive electrode and the negative electrode, was assembled which exhibits an energy density of 48.8 W h kg-1 with superior cycling stability, indicating the potential of this electrode in practical energy storage.

8.
J Colloid Interface Sci ; 554: 59-65, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31279273

RESUMO

The introduction of oxygen vacancies into electrode materials has been proven to be a valid way to enhance the electrochemical performance. However, the traditional methods to introduce oxygen vacancies require severe conditions that may be harmful to hydroxides. Herein, the oxygen vacancy-rich nickel-cobalt (NiCo) layered double hydroxide (denoted as Vo-NiCo LDH) nanowire array electrode is synthesized using the chemical reduction method. Owing to the reduction of NaBH4 solution, we can create oxygen vacancies under milder conditions, thus avoiding any damage to the hydroxide. The as-synthesized electrode shows a specific capacitance of 1563.1 F g-1 at 1 A g-1, which is much higher than that of the pristine electrode (995.4 F g-1 at 1 A g-1). Moreover, the cycling performance and rate performance are also enhanced. The as-fabricated asymmetric supercapacitor (Vo-NiCo LDH//Fe2O3) is able to deliver a maximum energy density of 56.2 W h kg-1 at a power density of 800 W kg-1 with a voltage window of 1.6 V.

9.
Dalton Trans ; 48(24): 8623-8632, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31107477

RESUMO

Intrinsically poor conductivity, sluggish ion transfer kinetics, and limited specific area are the three main obstacles that confine the electrochemical performance of metal oxides in supercapacitors. Engineered hollow metal oxide nanostructures can effectively satisfy the increasing power demand of modern electronics. In this work, both triple-shelled MnO2 and hollow Fe2O3 microcubes have been synthesized from a single MnCO3 template. The oxygen vacancies are introduced in both the positive and negative electrodes through a facile method. The oxygen vacancies can not only improve the conductivity and facilitate ion diffusion but also increase the electrode/electrolyte interfaces and electrochemically active sites. Consequently, both the oxygen-deficient triple-shelled MnO2 and hollow Fe2O3 exhibit larger capacitance and rate capability than the samples without oxygen vacancies. Moreover, due to the matchable specific capacitance and potential window between the positive and negative electrodes, the asymmetric supercapacitor exhibits high specific capacitance (240 F g-1), excellent energy density of 133 W h kg-1 at 1176 W kg-1, excellent power density (23 529 W kg-1 at 73 W h kg-1), and high cycling stability (90.9% after 5000 cycles). This strategy is highly reproducible in oxide-based electrodes, which have the potential to meet the requirements of practical application.

10.
ACS Appl Mater Interfaces ; 10(45): 38963-38969, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30354046

RESUMO

Carbon nanomaterials have been widely used to enhance the performance of MnO2-based supercapacitors. However, it still remains a challenge to directly fabricate high combining strength, mesostructured and high-performance MnO2/carbon nanotube (CNT)-nanostructured composite electrodes with a little weight percentage of carbon materials. Here, we report a novel mesostructured composite of the CNT-on-MnO2 nanosheet with a high MnO2 percentage, which consists of vertically aligned MnO2 nanosheets with nanopores and in situ formed oriented CNTs on MnO2 nanosheets (tube-on-sheet). The optimized CNTs/MnO2 possesses favorable features, namely, vertically aligned nanosheets to shorted ion diffusion path, a hierarchical porous structure for increased specific surface areas and active sites, and in situ formed CNTs for enhanced conductivity and robust structural stability. It is found that the unique tube-on-sheet CNTs/MnO2 nanocomposites with the high MnO2 percentage (>90 wt %) exhibit a high specific capacity of 1131 F g-1 based on total electrodes and 1229 F g-1 based on MnO2 at a current density of 1 A g-1, high rate capability, and ultrastable cycling life (94.4%@10 000 cycles). This electrode design strategy in this paper demonstrates a new way for high-performance electrodes for supercapacitors with high active material percentage.

11.
Adv Sci (Weinh) ; 5(5): 1700887, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29876214

RESUMO

The potential window of aqueous supercapacitors is limited by the theoretical value (≈1.23 V) and is usually lower than ≈1 V, which hinders further improvements for energy density. Here, a simple and scalable method is developed to fabricate unique graphene quantum dot (GQD)/MnO2 heterostructural electrodes to extend the potential window to 0-1.3 V for high-performance aqueous supercapacitor. The GQD/MnO2 heterostructural electrode is fabricated by GQDs in situ formed on the surface of MnO2 nanosheet arrays with good interface bonding by the formation of Mn-O-C bonds. Further, it is interesting to find that the potential window can be extended to 1.3 V by a potential drop in the built-in electric field of the GQD/MnO2 heterostructural region. Additionally, the specific capacitance up to 1170 F g-1 at a scan rate of 5 mV s-1 (1094 F g-1 at 0-1 V) and cycle performance (92.7%@10 000 cycles) between 0 and 1.3 V are observed. A 2.3 V aqueous GQD/MnO2-3//nitrogen-doped graphene ASC is assembled, which exhibits the high energy density of 118 Wh kg-1 at the power density of 923 W kg-1. This work opens new opportunities for developing high-voltage aqueous supercapacitors using in situ formed heterostructures to further increase energy density.

12.
Adv Sci (Weinh) ; 5(3): 1700687, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29593971

RESUMO

NiO is a promising electrode material for supercapacitors. Herein, the novel vertically standing nanosized NiO encapsulated in graphene layers (G@NiO) are rationally designed and synthesized as nanosheet arrays. This unique vertical standing structure of G@NiO nanosheet arrays can enlarge the accessible surface area with electrolytes, and has the benefits of short ion diffusion path and good charge transport. Further, an interconnected graphene conductive network acts as binder to encapsulate the nanosized NiO particles as core-shell structure, which can promote the charge transport and maintain the structural stability. Consequently, the optimized G@NiO hybrid electrodes exhibit a remarkably enhanced specific capacity up to 1073 C g-1 and excellent cycling stability. This study provides a facial strategy to design and construct high-performance metal oxides for energy storage.

13.
Dalton Trans ; 47(26): 8771-8778, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29916517

RESUMO

NiCo2S4 is a promising electrode material for supercapacitors, due to its rich redox reactions and intrinsically high conductivity. Unfortunately, in most cases, NiCo2S4-based electrodes often suffer from low specific capacitance, low rate capability and fast capacitance fading. Herein, we have rationally designed P-doped NiCo2S4 nanotube arrays to improve the electrochemical performance through a phosphidation reaction. Characterization results demonstrate that the P element is successfully doped into NiCo2S4 nanotube arrays. Electrochemical results demonstrate that P-doped NiCo2S4 nanotube arrays exhibit better electrochemical performance than pristine NiCo2S4, e.g. higher specific capacitance (8.03 F cm-2 at 2 mA cm-2), good cycling stability (87.5% capacitance retention after 5000 cycles), and lower charge transfer resistance. More importantly, we also assemble an asymmetric supercapacitor using P-doped NiCo2S4 nanotube arrays and activated carbon on carbon cloth, which delivers a maximum energy density of 42.1 W h kg-1 at a power density of 750 W kg-1. These results demonstrate that the as-fabricated P-doped NiCo2S4 nanotube arrays on carbon cloth show great potential as a battery-type electrode for high-performance supercapacitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA