Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 505
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 586(7830): 549-554, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32906144

RESUMO

Metal-organic frameworks (MOFs)1-3 are known for their specific interactions with gas molecules4,5; this, combined with their rich and ordered porosity, makes them promising candidates for the photocatalytic conversion of gas molecules to useful products6. However, attempts to use MOFs or MOF-based composites for CO2 photoreduction6-13 usually result in far lower CO2 conversion efficiency than that obtained from state-of-the-art solid-state or molecular catalysts14-18, even when facilitated by sacrificial reagents. Here we create 'molecular compartments' inside MOF crystals by growing TiO2 inside different pores of a chromium terephthalate-based MOF (MIL-101) and its derivatives. This allows for synergy between the light-absorbing/electron-generating TiO2 units and the catalytic metal clusters in the backbones of MOFs, and therefore facilitates photocatalytic CO2 reduction, concurrent with production of O2. An apparent quantum efficiency for CO2 photoreduction of 11.3 per cent at a wavelength of 350 nanometres is observed in a composite that consists of 42 per cent TiO2 in a MIL-101 derivative, namely, 42%-TiO2-in-MIL-101-Cr-NO2. TiO2 units in one type of compartment in this composite are estimated to be 44 times more active than those in the other type, underlining the role of precise positioning of TiO2 in this system.

2.
Mol Phylogenet Evol ; 193: 108023, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342159

RESUMO

The Himalaya-Hengduan Mountains (HHM), a renowned biodiversity hotspot of the world, harbors the most extensive habitats for alpine plants with extraordinary high levels of endemism. Although the general evolution pattern has been elucidated, the underlying processes driving spectacular radiations in many species-rich groups remain elusive. Corydalis DC. is widely distributed throughout the Northern Hemisphere containing more than 500 species, with high diversity in HHM and adjacent regions. Using 95 plastid genes, 3,258,640 nuclear single nucleotide polymorphisms (SNPs) and eight single-copy nuclear genes (SCNs) generated from genome skimming data, we reconstructed a robust time-calibrated phylogeny of Corydalis comprising more than 100 species that represented all subgenera and most sections. Molecular dating indicated that all main clades of Corydalis began to diverge in the Eocene, with the majority of extant species in HHM emerged from a diversification burst after the middle Miocene. Global pattern of mean divergence times indicated that species distributed in HHM were considerably younger than those in other regions, particularly for the two most species-rich clades (V and VI) of Corydalis. The early divergence and the recent diversification of Corydalis were most likely promoted by the continuous orogenesis and climate change associated with the uplift of the Qinghai-Tibetan Plateau (QTP). Our study demonstrates the effectivity of phylogenomic analyses with genome skimming data on the phylogeny of species-rich taxa, and sheds lights on how the uplift of QTP has triggered the evolutionary radiations of large plant genera in HHM and adjacent regions.


Assuntos
Corydalis , Filogenia , Himalaia , Biodiversidade , Ecossistema , Plantas
3.
Rev Cardiovasc Med ; 25(6): 213, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39076322

RESUMO

Anthracyclines are effective anticancer drugs; however, their use is restricted because of their dose-dependent, time-dependent and irreversible myocardial toxicity. The mechanism of anthracycline cardiotoxicity has been widely studied but remains unclear. Protein quality control is crucial to the stability of the intracellular environment and, ultimately, to the heart because cardiomyocytes are terminally differentiated. Two evolutionarily conserved mechanisms, autophagy, and the ubiquitin-proteasome system, synergistically degrade misfolded proteins and remove defective organelles. Recent studies demonstrated the importance of these mechanisms. Further studies will reveal the detailed metabolic pathway and metabolic control of the protein quality control mechanism integrated into anthracycline-induced cardiotoxicity. This review provides theoretical support for clinicians in the application and management of anthracyclines.

4.
Neurochem Res ; 49(9): 2491-2504, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38862726

RESUMO

Idebenone, an antioxidant used in treating oxidative damage-related diseases, has unclear neuroprotective mechanisms. Oxidative stress affects cell and mitochondrial membranes, altering Adp-ribosyl cyclase (CD38) and Silent message regulator 3 (SIRT3) protein expression and possibly impacting SIRT3's ability to deacetylate Tumor protein p53 (P53). This study explores the relationship between CD38, SIRT3, and P53 in H2O2-injured HT22 cells treated with Idebenone. Apoptosis was detected using flow cytometry and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining after determining appropriate H2O2 and Idebenone concentrations.In this study, Idebenone was found to reduce apoptosis and decrease P53 and Caspase3 expression in H2O2-injured HT22 cells by detecting apoptosis-related protein expression. Through bioinformatics methods, CD38 was identified as the target of Idebenone, and it further demonstrated that Idebenone decreased the expression of CD38 and increased the level of SIRT3. An increased NAD+/NADH ratio was detected, suggesting Idebenone induces SIRT3 expression and protects HT22 cells by decreasing apoptosis-related proteins. Knocking down SIRT3 downregulated acetylated P53 (P53Ac), indicating SIRT3's importance in P53 deacetylation.These results supported that CD38 was used as a target of Idebenone to up-regulate SIRT3 to deacetylate activated P53, thereby protecting HT22 cells from oxidative stress injury. Thus, Idebenone is a drug that may show great potential in protecting against reactive oxygen species (ROS) induced diseases such as Parkinson's disease, and Alzheimer's disease. And it might be able to compensate for some of the defects associated with CD38-related diseases.


Assuntos
ADP-Ribosil Ciclase 1 , Apoptose , Estresse Oxidativo , Sirtuína 3 , Proteína Supressora de Tumor p53 , Ubiquinona , Proteína Supressora de Tumor p53/metabolismo , Estresse Oxidativo/efeitos dos fármacos , ADP-Ribosil Ciclase 1/metabolismo , Animais , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Camundongos , Sirtuína 3/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peróxido de Hidrogênio/toxicidade , Antioxidantes/farmacologia , Glicoproteínas de Membrana/metabolismo , Fármacos Neuroprotetores/farmacologia
5.
Sheng Li Xue Bao ; 76(3): 353-364, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38939930

RESUMO

The role of the aryl hydrocarbon receptor (AhR) in regulating oxidative stress and immune responses has been increasingly recognized. However, its involvement in depression and the underlying mechanisms remain poorly understood. This study aimed to investigate the effect of 6-formylindolo[3,2-b]carbazole (FICZ), an endogenous AhR ligand, on a lipopolysaccharide (LPS)-induced depression model and the underlying mechanism. After being treated with FICZ (50 mg/kg), male C57BL/6J mice received intraperitoneal injection of LPS and underwent behavioral tests 24 h later. The levels of inflammatory cytokines, including IL-1ß, IL-6, and TNF-α, were measured in the hippocampus and serum using enzyme-linked immunosorbent assay (ELISA). The expression levels of CYP1A1, AhR and NLRP3 were analyzed using qPCR and Western blot. The results showed that, compared with control group, LPS alone significantly down-regulated the expression levels of CYP1A1 mRNA and AhR protein in the hippocampus of mice, reduced glucose preference, prolonged immobility time in forced swimming test, increased IL-6 and IL-1ß levels in the hippocampus, increased serum IL-1ß level, and up-regulated NLRP3 mRNA and protein expression levels in mouse hippocampus, while FICZ significantly reversed the aforementioned effects of LPS. These findings suggest that AhR activation attenuates the inflammatory response associated with depression and modulates the expression of NLRP3. The present study provides novel insights into the role of AhR in the development of depression, and presents AhR as a potential therapeutic target for the treatment of depression.


Assuntos
Carbazóis , Citocromo P-450 CYP1A1 , Depressão , Hipocampo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptores de Hidrocarboneto Arílico , Animais , Masculino , Camundongos , Comportamento Animal , Carbazóis/farmacologia , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Citocinas/metabolismo , Depressão/metabolismo , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/efeitos adversos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3894-3900, 2024 Jul.
Artigo em Zh | MEDLINE | ID: mdl-39099363

RESUMO

This study explored the effect of Tianma Gouteng Decoction on oxidative stress induced by angiotensin Ⅱ(AngⅡ) in vascular smooth muscle cell(VSMC) and its molecular mechanism. Primary rat VSMC were cultured using tissue block method, and VSMC were identified by α-actin immunofluorescence staining. AngⅡ at a concentration of 1×10~(-6) mol·L~(-1) was used as the stimulating factor, and Sprague Dawley(SD) rats were orally administered with Tianma Gouteng Decoction to prepare drug serum. Rat VSMC were divided into normal group, model group, Chinese medicine group, and inhibitor(3-methyladenine, 3-MA) group. Cell counting kit-8(CCK-8) assay was used to detect cell proliferation activity. Bromodeoxyuridine(BrdU) flow cytometry was used to detect cell cycle. Transwell assay was used to detect cell migration ability. Enzyme-linked immunosorbent assay(ELISA) was used to detect the activity of superoxide dismutase(SOD), catalase(CAT), and malondialdehyde(MDA) in VSMC. The intracellular reactive oxygen species(ROS) fluorescence intensity was detected using DCFH-DA fluorescent probe. Western blot was used to detect the expression of PTEN-induced putative kinase 1(PINK1), Parkin, p62, and microtubule-associated protein 1A/1B-light chain 3(LC3-Ⅱ) proteins in VSMC. The results showed that Tianma Gouteng Decoction-containing serum at a concentration of 8% could significantly inhibit VSMC growth after 48 hours of intervention. Compared with the normal group, the model group showed significantly increased cell proliferation activity and migration, significantly decreased levels of SOD and CAT, significantly increased levels of MDA, significantly enhanced ROS fluorescence intensity, significantly decreased expression of PINK1, Parkin, and LC3-Ⅱ proteins, and significantly increased expression of p62 protein. Compared with the model group, the Chinese medicine group showed significantly reduced cell proliferation activity and migration, significantly increased levels of SOD and CAT, significantly decreased levels of MDA, significantly weakened ROS fluorescence intensity, significantly increased expression of PINK1, Parkin, and LC3-Ⅱ proteins, and significantly decreased expression of p62 protein. Compared with the Chinese medicine group, the addition of the mitochondrial autophagy inhibitor 3-MA could block the intervention of Tianma Gouteng Decoction-containing serum on VSMC proliferation, migration, mitochondrial autophagy, and oxidative stress levels, with statistically significant differences. In summary, Tianma Gouteng Decoction has good antioxidant activity and can inhibit cell proliferation and migration. Its mechanism of action may be related to the activation of the mitochondrial autophagy PINK1/Parkin signaling pathway.


Assuntos
Angiotensina II , Proliferação de Células , Medicamentos de Ervas Chinesas , Músculo Liso Vascular , Estresse Oxidativo , Proteínas Quinases , Ratos Sprague-Dawley , Ubiquitina-Proteína Ligases , Animais , Medicamentos de Ervas Chinesas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Masculino , Proliferação de Células/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Movimento Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , Superóxido Dismutase/metabolismo
7.
Angew Chem Int Ed Engl ; 63(7): e202317361, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38116868

RESUMO

Numerous reported bioinspired osmotic energy conversion systems employing cation-/anion-selective membranes and solutions with different salinity are actually far from the biological counterpart. The iso-osmotic power generator with the specific ionic permselective channels (e.g., K+ or Na+ channels) which just allow specific ions to get across and iso-osmotic solutions still remain challenges. Inspired by nature, we report a bioinspired K+ -channel by employing a K+ selective ligand, 1,1,1-tris{[(2'-benzylaminoformyl)phenoxy]methyl}ethane (BMP) and graphene oxide membrane. Specifically, the K+ and Na+ selectivity of the prepared system could reach up to ≈17.8, and the molecular dynamics simulation revealed that the excellent permselectivity of K+ mainly stemmed from the formed suitable channel size. Thus, we assembled the K+ -selective iso-osmotic power generator (KSIPG) with the power density up to ≈15.1 mW/m2 between equal concentration solutions, which is higher than traditional charge-selective osmotic power generator (CSOPG). The proposed strategy has well shown the realizable approach to construct single-ion selective channels-based highly efficient iso-osmotic energy conversion systems and would surely inspire new applications in other fields, including self-powered systems and medical materials, etc.

8.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(1): 72-80, 2024 Jan 15.
Artigo em Zh | MEDLINE | ID: mdl-38269463

RESUMO

OBJECTIVES: To understand the growth and development status and differences between small for gestational age (SGA) and appropriate for gestational age (AGA) preterm infants during corrected ages 0-24 months, and to provide a basis for early health interventions for preterm infants. METHODS: A retrospective study was conducted, selecting 824 preterm infants who received regular health care at the Guangzhou Women and Children's Medical Center from July 2019 to July 2022, including 144 SGA and 680 AGA infants. The growth data of SGA and AGA groups at birth and corrected ages 0-24 months were analyzed and compared. RESULTS: The SGA group had significantly lower weight and length than the AGA group at corrected ages 0-18 months (P<0.05), while there were no significant differences between the two groups at corrected age 24 months (P>0.05). At corrected age 24 months, 85% (34/40) of SGA and 79% (74/94) of AGA preterm infants achieved catch-up growth. Stratified analysis by gestational age showed that there were significant differences in weight and length at corrected ages 0-9 months between the SGA subgroup with gestational age <34 weeks and the AGA subgroups with gestational age <34 weeks and 34 weeks (P<0.05). In addition, the weight and length of the SGA subgroup with gestational age 34 weeks showed significant differences compared to the AGA subgroups with gestational age <34 weeks and 34 weeks at corrected ages 0-18 months and corrected ages 0-12 months, respectively (P<0.05). Catch-up growth for SGA infants with gestational age <34 weeks and 34 weeks mainly occurred at corrected ages 0-12 months and corrected ages 0-18 months, respectively. CONCLUSIONS: SGA infants exhibit delayed early-life physical growth compared to AGA infants, but can achieve a higher proportion of catch-up growth by corrected age 24 months than AGA infants. Catch-up growth can be achieved earlier in SGA infants with a gestational age of <34 weeks compared to those with 34 weeks.


Assuntos
Recém-Nascido Prematuro , Recém-Nascido Pequeno para a Idade Gestacional , Recém-Nascido , Criança , Lactente , Feminino , Humanos , Pré-Escolar , Idade Gestacional , Estudos Longitudinais , Estudos Retrospectivos
9.
J Neuroinflammation ; 20(1): 112, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165444

RESUMO

BACKGROUND: Numerous studies have found that inhibiting the expression of NLRP3 inflammasome can significantly improve depressive-like behaviors in mice, but the research on its effect on cognitive decline in depression and its mechanism is still lacking. This study aimed to elucidate the role of NLRP3 inflammasome in cognitive decline in depression and explore the common neuro-immunological mechanisms of depression and Alzheimer's disease (AD). METHODS: Male C57BL/6 mice were subjected to chronic unpredictable mild stress (CUMS) for 5 weeks, treatment group was administered with the NLRP3 inhibitor MCC950 (10 mg/kg, i.p.), fluoxetine served as positive control. Then, the mice were assessed for cognitive behaviors and depression-like behaviors, and changes of microglia and neurons in hippocampus and levels of Aß metabolic pathway and tau protein were measured. To explore the mechanism of NLRP3 activation on neurons, we performed in vitro studies using BV2 microglia and mouse primary neurons. Furthermore, we focused on the role of NLRP3 inflammasome in the function of neurons and the expression of AD pathological indicators. RESULTS: CUMS induced depressive-like behaviors and cognitive decline in mice, which could be reversed by inhibiting NLRP3 inflammasome. MCC950, a specific NLRP3 inhibitor, alleviated CUMS-induced neuron injury and AD-like pathological changes, including the abnormal expression of Aß metabolic pathway and the hyper-phosphorylation of tau protein. LPS (1 µg/mL) + ATP (1 mM) treatment activated the expression of NLRP3 inflammasome and IL-1ß in vitro. In vitro experiment also proved that inhibiting the expression of NLRP3 inflammasome in microglia can restore the Aß metabolic pathway to normal, decrease neuronal tau protein phosphorylation and protect neurons. CONCLUSIONS: Inhibition of NLRP3 inflammasome effectively alleviated CUMS-induced depressive-like behaviors and cognitive decline in mice, and inhibited the activation of AD physiological indicators.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Camundongos , Masculino , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença de Alzheimer/metabolismo , Proteínas tau , Camundongos Endogâmicos C57BL , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia
10.
J Med Virol ; 95(1): e28407, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36519597

RESUMO

To control the ongoing COVID-19 pandemic, a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been developed. However, the rapid mutations of SARS-CoV-2 spike (S) protein may reduce the protective efficacy of the existing vaccines which is mainly determined by the level of neutralizing antibodies targeting S. In this study, we screened prevalent S mutations and constructed 124 pseudotyped lentiviral particles carrying these mutants. We challenged these pseudoviruses with sera vaccinated by Sinovac CoronaVac and ZF2001 vaccines, two popular vaccines designed for the initial strain of SARS-CoV-2, and then systematically assessed the susceptivity of these SARS-CoV-2 variants to the immune sera of vaccines. As a result, 14 S mutants (H146Y, V320I + S477N, V382L, K444R, L455F + S477N, L452M + F486L, F486L, Y508H, P521R, A626S, S477N + S698L, A701V, S477N + T778I, E1144Q) were found to be significantly resistant to neutralization, indicating reduced protective efficacy of the vaccines against these SARS-CoV-2 variants. In addition, F486L and Y508H significantly enhanced the utilization of human angiotensin-converting enzyme 2, suggesting a potentially elevated infectivity of these two mutants. In conclusion, our results show that some prevalent S mutations of SARS-CoV-2 reduced the protective efficacy of current vaccines and enhance the infectivity of the virus, indicating the necessity of vaccine renewal and providing direction for the development of new vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Anticorpos Antivirais , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Pandemias , Anticorpos Neutralizantes , Mutação
11.
Ann Hematol ; 102(12): 3593-3601, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831153

RESUMO

Hepatitis B virus (HBV)has a high, chronic infection rate in Asian populations, but only few studies have analyzed the effect of Epstein-Barr virus (EBV) or Cytomegalovirus (CMV) reactivation in patients exposed to HBV after haploidentical hematopoietic stem cell transplantation (haplo-HSCT). This study aimed to assess the clinical outcomes of these patients. We conducted a retrospective research including 61 patients exposed to HBV after undergoing haplo-HSCT. The patients were classified into two groups: the CMV reactivation group and no CMV reactivation group. The results were compared between the two groups using the K-W test for continuous variables, Pearson's chi-square test for categorical variables, Kaplan-Meier curves to estimate overall survival (OS) and leukemia-free survival (LFS), and a Cox proportional hazards model to analyze multivariable influences. The 3-year cumulative HBV reactivation rate was 8.2%. The median duration of HBV reactivation was 16 months (16-22 months) after haplo-HSCT. The CMV reactivation group had a higher cumulative incidence of HBV reactivation than the group without CMV reactivation. The EBV reactivation was substantially higher in the CMV reactivation group compared to that in the no CMV reactivation group (37.0% vs.5.9% respectively; P = 0.002). Furthermore, EBV reactivation was a risk factor for 1-year LFS and 1-year OS. Based on our data, EBV reactivation was related to worse outcomes in patients exposed to HBV after haplo-HSCT, whereas CMV reactivation was not.


Assuntos
Infecções por Citomegalovirus , Infecções por Vírus Epstein-Barr , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia , Humanos , Herpesvirus Humano 4 , Vírus da Hepatite B , Infecções por Vírus Epstein-Barr/epidemiologia , Infecções por Vírus Epstein-Barr/etiologia , Estudos Retrospectivos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Citomegalovirus , Leucemia/complicações , Ativação Viral , Doença Enxerto-Hospedeiro/etiologia
12.
Mol Pharm ; 20(9): 4517-4527, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37526016

RESUMO

This study is designed to compare drug encapsulation by cucurbit[7]uril and ß-cyclodextrin, using fluorofenidone as a model drug. Single-crystal X-ray diffraction analysis was employed to successfully determine the crystal structures of fluorofenidone·H+@cucurbit[7]uril Form, fluorofenidone@cucurbit[7]uril Form, and fluorofenidone@ß-cyclodextrin Form. Keto-enol tautomerization of fluorofenidone mediated by cucurbit[7]uril in acid solution is confirmed by crystal structures, pH titration, and nuclear magnetic resonance experiments. However, ß-cyclodextrin cannot cause the keto-enol tautomerization of fluorofenidone under similar conditions. The phase solubility study demonstrates that cucurbit[7]uril has a much higher solubilization capacity for fluorofenidone than ß-cyclodextrin in 0.1 M HCl since the Kc values of fluorofenidone with cucurbit[7]uril and ß-cyclodextrin were 1223.97 ± 452.68 and 78.49 ± 10.56 M-1, respectively. Excellent solubility can be attributed to the keto-enol tautomerization of fluorofenidone under the conditions of cucurbit[7]uril in acid solution. The enol form of fluorofenidone is encapsulated by cucurbit[7]uril by hydrogen bonding interaction and hydrophobic interaction to increase binding affinity. Rat pharmacokinetic studies demonstrate that the area under the plasma concentration-time curve from time 0 to 7 h value of fluorofenidone@cucurbit[7]uril complex is 1.70-fold greater than that of free fluorofenidone, and the mean residence time from time 0 to 7 h is slightly prolonged from 1.29 to 1.76 h (P < 0.01) after oral administration. However, no significant difference is found between fluorofenidone and fluorofenidone@ß-cyclodextrin complex. This work indicates that the induction of keto-enol tautomerization of drugs using macrocyclic molecules has the potential to be an effective method to improve their solubility and bioavailability, providing valuable insights for the application of macrocyclic molecules in the biomedical field.


Assuntos
Compostos Macrocíclicos , beta-Ciclodextrinas , Ratos , Animais , Solubilidade , beta-Ciclodextrinas/química , Compostos Macrocíclicos/química , Hidrocarbonetos Aromáticos com Pontes/química
13.
Bioorg Chem ; 141: 106895, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37797456

RESUMO

In this study, twenty-one novel 2,4-diaminopyrimidine cinnamyl derivatives as inhibitors targeting FAK were designed and synthesized based on the structure of TAE-226, and the inhibitory effects of these compounds on both the FAK enzyme and three cancer cell lines (MGC-803, HCT-116, and KYSE30) were investigated. Among them, compound 12s displayed potent inhibitory potency on FAK (IC50 = 47 nM), and demonstrated more significant antiproliferative activities in MGC-803, HCT-116 and KYSE30 cells (IC50 values were 0.24, 0.45 and 0.44 µM, respectively) compared to TAE-226. Furthermore, compound 12s significantly inhibited FAK activation leading to the negative regulation of FAK-related signaling pathways such as AKT/mTOR and MAPK signaling pathways. Molecular docking study suggested that compound 12s could well occupy the ATP-binding pocket site of FAK similar to TAE-226. In addition, compound 12s also efficiently inhibited the proliferation, induced apoptosis and cellular senescence in MGC-803 cells. In conclusion, compound 12s emerges a potent FAK inhibitor that could exert potent inhibitory activity against gastric cancer cells.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Relação Estrutura-Atividade , Antineoplásicos/química , Simulação de Acoplamento Molecular , Neoplasias Gástricas/tratamento farmacológico , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases
14.
Bioorg Chem ; 137: 106580, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37149948

RESUMO

As a class of microtubule targeting agents, colchicine binding site inhibitors (CBSIs) are considered as promising drug candidates for cancer therapy. However, due to adverse reactions, there are currently no CBSIs approved by FDA for cancer treatment. Therefore, extensive efforts are still encouraged to find novel CBSIs with different chemical structures and better anticancer efficacies. In this work, we designed and synthesized a new coumarin-dihydroquinoxalone derivative, MY-673, and evaluated its anticancer potency in vitro and in vivo. We confirmed that MY-673 was a potent CBSI that it not only inhibited tubulin polymerization, but also exhibited significant inhibitory potency on the growth of 13 cancer cells with IC50 values from 11.7 nM to 395.9 nM. Based on the results of kinase panel screening, MY-673 could inhibit ERK (extracellular regulated protein kinases) pathways-related kinases. We further confirmed that MY-673 could inhibit ERK signaling pathway in MGC-803 and HGC-27 cells, and then affected the expression level of SMAD4 protein in TGF-ß (transforming growth factor ß) /SMAD (small mother against decapentaplegic) signaling pathway using the western blotting assay. In addition, compound MY-673 could effectively inhibit cell proliferation, migration and induce cell apoptosis. We also further confirmed the in vivo efficacy of MY-673 in inhibiting tumor growth using the MGC-803 xenograft tumor model. At 20 mg/kg, the TGI rate was 85.9%, and it did not cause obvious toxicity to the main organs of mice. Together, the results we report here indicated that MY-673 was a promising CBSI for cancer treatment, which was capable of inhibiting the ERK pathway with potent antiproliferative activities in vitro and in vivo.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Animais , Camundongos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/química , Sistema de Sinalização das MAP Quinases , Tubulina (Proteína)/metabolismo , Microtúbulos , Colchicina/metabolismo , Proliferação de Células , Neoplasias Gástricas/tratamento farmacológico , Antineoplásicos/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade
15.
Support Care Cancer ; 31(5): 302, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099274

RESUMO

OBJECTIVES: To clarify the adaptability of cancer patients to return to work and explore its influencing factors. DESIGN: A cross-sectional study. SETTINGS/PARTICIPANTS: From March to October 2021, 283 cancer patients in the follow-up period were recruited from the oncology departments of four secondary and above hospitals and cancer friendship associations in Nantong city using self-developed scale of adaptability to return to work for cancer patients by convenience sampling method. METHODS: The contents included general sociodemographic data, disease-related data, cancer patients' readability to work Scale, Medical Coping Style Questionnaire, Social Support Rating Scale, Family Closeness and Readability Scale, General self-efficacy Scale and Social impact Scale. Paper questionnaires were used for face-to-face data collection, and SPSS17.0 was used for statistical analysis. Univariable analyses and multiple linear regression analysis were conducted. RESULTS: The overall score of cancer patients' adaptability to return to work was (87.05±20.255), (22.54±4.234) for the dimension of focused rehabilitation, (32.02±9.013) for the dimension of reconstruction effectiveness, and (32.49±9.023) for the dimension of adjustment planning. Multiple linear regression analysis showed that the current return to full-time work (ß =0.226, P 0.05), the current return to non-full-time work (ß =0.184, P 0.05), yield response (ß = -0.132, P 0.05), and general self-efficacy (ß =0.226, P 0.05) could affect their return to work adaptation. CONCLUSION: The results of status quo and influencing factors showed that the adaptability of cancer patients to return to work was generally higher in this study. Cancer patients who had participated in work, had lower yield coping scores and stigma scores, and higher self-efficacy scores and family adjustment and intimacy scores had better adaptability to return to work again. ETHICAL APPROVAL: It has been approved by the Human Research Ethics Committee of the Affiliated Hospital of Nantong University (Project No.202065).


Assuntos
Neoplasias , Retorno ao Trabalho , Humanos , Estudos Transversais , Adaptação Psicológica , Inquéritos e Questionários
16.
J Enzyme Inhib Med Chem ; 38(1): 2237701, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37489043

RESUMO

In this work, a series of novel arylamide derivatives containing piperazine moiety were designed and synthesised as tubulin polymerisation inhibitors. Among 25 target compounds, compound 16f (MY-1121) exhibited low nanomolar IC50 values ranging from 0.089 to 0.238 µM against nine human cancer cells. Its inhibitory effects on liver cancer cells were particularly evident with IC50 values of 89.42 and 91.62 nM for SMMC-7721 and HuH-7 cells, respectively. Further mechanism studies demonstrated that compound 16f (MY-1121) could bind to the colchicine binding site of ß-tubulin and directly act on ß-tubulin, thus inhibiting tubulin polymerisation. Additionally, compound 16f (MY-1121) could inhibit colony forming ability, cause morphological changes, block cell cycle arrest at the G2 phase, induce cell apoptosis, and regulate the expression of cell cycle and cell apoptosis related proteins in liver cancer cells. Overall, the promising bioactivities of compound 16f (MY-1121) make the novel arylamide derivatives have the value for further development as tubulin polymerisation inhibitors with potent anticancer activities.


Assuntos
Neoplasias Hepáticas , Tubulina (Proteína) , Humanos , Apoptose , Sítios de Ligação , Piperazina , Moduladores de Tubulina
17.
J Asian Nat Prod Res ; 25(5): 503-509, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35912898

RESUMO

Beauvercin H (1), a new cyclic hexadepsipeptide, and two known ones (2 and 3) were isolated from the EtOH extract of the solid culture of Fusarium sp. Their structures were elucidated by spectroscopic analysis, including extensive 1D and 2D NMR techniques, as well as comparison with literature values. Additionally, compounds 1-3 were tested for their cytotoxic activities. The results showed that all isolated compounds exhibited cytotoxic activities against five human cancer cell lines with IC50 values ranging from 1.379 to 13.12 µM.


Assuntos
Antineoplásicos , Fusarium , Humanos , Fusarium/química , Fermentação , Antineoplásicos/farmacologia , Antineoplásicos/química , Espectroscopia de Ressonância Magnética , Linhagem Celular Tumoral , Estrutura Molecular
18.
Int J Mol Sci ; 24(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36834576

RESUMO

Decidualization is necessary for the successful establishment of early pregnancy in rodents and humans. Disturbed decidualization results in recurrent implantation failure, recurrent spontaneous abortion, and preeclampsia. Tryptophan (Trp), one of the essential amino acids in humans, has a positive effect on mammalian pregnancy. Interleukin 4-induced gene 1 (IL4I1) is a recently identified enzyme that can metabolize L-Trp to activate aryl hydrocarbon receptor (AHR). Although IDO1-catalyzed kynurenine (Kyn) from Trp has been shown to enhance human in vitro decidualization via activating AHR, whether IL4I1-catalyzed metabolites of Trp are involved in human decidualization is still unknown. In our study, human chorionic gonadotropin stimulates IL4I1 expression and secretion from human endometrial epithelial cells through ornithine decarboxylase-induced putrescine production. Either IL4I1-catalyzed indole-3-pyruvic acid (I3P) or its metabolite indole-3-aldehyde (I3A) from Trp is able to induce human in vitro decidualization by activating AHR. As a target gene of AHR, Epiregulin induced by I3P and I3A promotes human in vitro decidualization. Our study indicates that IL4I1-catalyzed metabolites from Trp can enhance human in vitro decidualization through AHR-Epiregulin pathway.


Assuntos
Interleucina-4 , Receptores de Hidrocarboneto Arílico , Animais , Humanos , Epirregulina , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Cinurenina/metabolismo , Gonadotropina Coriônica , Mamíferos/metabolismo , L-Aminoácido Oxidase
19.
Molecules ; 28(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36770809

RESUMO

Neuroblastoma has obvious heterogeneity. It is one of the few undifferentiated malignant tumors that can spontaneously degenerate into completely benign tumors. However, for its high-risk type, even with various intensive treatment options, the prognosis is still unsatisfactory. At the same time, a large number of research data show that the abnormal amplification and high-level expression of the MYCN gene are positively correlated with the malignant progression, poor prognosis, and mortality of neuroblastoma. In this context, this article explores the role of the N-Myc, MYCN gene expression product on its target genes related to the cell cycle and reveals its regulatory network in promoting tumor proliferation and malignant progression. We hope it can provide ideas and direction for the research and development of drugs targeting N-Myc and its downstream target genes.


Assuntos
Neuroblastoma , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Genes myc , Ciclo Celular/genética , Neuroblastoma/patologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
20.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1892-1898, 2023 Apr.
Artigo em Zh | MEDLINE | ID: mdl-37282965

RESUMO

The present study aimed to explore the chemical constituents from the stems and leaves of Cephalotaxus fortunei. Seven lignans were isolated from the 75% ethanol extract of C. fortunei by various chromatographic methods, including silica gel, ODS column chromatography, and HPLC. The structures of the isolated compounds were elucidated according to physicochemical properties and spectral data. Compound 1 is a new lignan named cephalignan A. The known compounds were identified as 8-hydroxy-conidendrine(2), isolariciresinol(3), leptolepisol D(4), diarctigenin(5), dihydrodehydrodiconiferyl alcohol 9'-O-ß-D-glucopyranoside(6), and dihydrodehydrodiconiferyl alcohol 4-O-ß-D-glucopyranoside(7). Compounds 2 and 5 were isolated from the Cephalotaxus plant for the first time.


Assuntos
Cephalotaxus , Lignanas , Lignanas/análise , Folhas de Planta/química , Etanol , Cromatografia Líquida de Alta Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA