Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177581

RESUMO

As a critical support and fixed component of aero engines, electro-hydrostatic actuators, and other equipment, the operation of aviation bearings is often subject to high speed, high-temperature rise, large load, and other continuous complex fluctuation conditions, which makes their health assessment tasks more difficult. To solve this problem, an intelligent health assessment method based on a new Deep Transfer Graph Convolutional Network (DTGCN) is proposed for aviation bearings under large speed fluctuation conditions. First, a new DTGCN algorithm is designed, which mainly uses the domain adaptation mechanism to enhance the performance of Graph Convolutional Network (GCN) and the generalization performance of transfer properties. Specifically, order spectrum analysis is employed to resample the vibration signals of aviation bearings and transform them into order spectral signals. Then, the trained 1dGCN is used as the feature extractor, and the designed Dynamic Multiple Kernel Maximum Mean Discrepancy (DMKMMD) is calculated to match the difference in edge distribution. Finally, the aligned features are fed into the softmax classifier for intelligent health assessment. The effectiveness of the proposed diagnostic algorithm and method are validated by using aviation bearing fault data set under large speed fluctuation conditions.

2.
Sensors (Basel) ; 22(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015944

RESUMO

Aimed at the problem of fault characteristic information bearing vibration signals being easily submerged in some background noise and harmonic interference, a new algorithm named enhanced differential product weighted morphological filtering (EDPWMF) is proposed for bearing fault feature extraction. In this method, an enhanced differential product weighted morphological operator (EDPWO) is first constructed by means of infusing the differential product operation and weighted operation into four basic combination morphological operators. Subsequently, aiming at the disadvantage of the parameter selection of the structuring element (SE) of EDPWO depending on artificial experience, an index named fault feature ratio (FFR) is employed to automatically determine the flat SE length of EDPWO and search for the optimal weighting correlation factors. The fault diagnosis results of simulation signals and experimental bearing fault signals show that the proposed method can effectively extract bearing fault feature information from raw bearing vibration signals containing noise interference. Moreover, the filtering result obtained by the proposed method is better than that of traditional morphological filtering methods (e.g., AVG, STH and EMDF) through comparative analysis. This study provides a reference value for the construction of advanced morphological analysis methods.

3.
Entropy (Basel) ; 23(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34573753

RESUMO

The fuzzy-entropy-based complexity metric approach has achieved fruitful results in bearing fault diagnosis. However, traditional hierarchical fuzzy entropy (HFE) and multiscale fuzzy entropy (MFE) only excavate bearing fault information on different levels or scales, but do not consider bearing fault information on both multiple layers and multiple scales at the same time, thus easily resulting in incomplete fault information extraction and low-rise identification accuracy. Besides, the key parameters of most existing entropy-based complexity metric methods are selected based on specialist experience, which indicates that they lack self-adaptation. To address these problems, this paper proposes a new intelligent bearing fault diagnosis method based on self-adaptive hierarchical multiscale fuzzy entropy. On the one hand, by integrating the merits of HFE and MFE, a novel complexity metric method, named hierarchical multiscale fuzzy entropy (HMFE), is presented to extract a multidimensional feature matrix of the original bearing vibration signal, where the important parameters of HMFE are automatically determined by using the bird swarm algorithm (BSA). On the other hand, a nonlinear feature matrix classifier with strong robustness, known as support matrix machine (SMM), is introduced for learning the discriminant fault information directly from the extracted multidimensional feature matrix and automatically identifying different bearing health conditions. Two experimental results on bearing fault diagnosis show that the proposed method can obtain average identification accuracies of 99.92% and 99.83%, respectively, which are higher those of several representative entropies reported by this paper. Moreover, in the two experiments, the standard deviations of identification accuracy of the proposed method were, respectively, 0.1687 and 0.2705, which are also greater than those of the comparison methods mentioned in this paper. The effectiveness and superiority of the proposed method are verified by the experimental results.

4.
Entropy (Basel) ; 23(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208777

RESUMO

The goal of the paper is to present a solution to improve the fault detection accuracy of rolling bearings. The method is based on variational mode decomposition (VMD), multiscale permutation entropy (MPE) and the particle swarm optimization-based support vector machine (PSO-SVM). Firstly, the original bearing vibration signal is decomposed into several intrinsic mode functions (IMF) by using the VMD method, and the feature energy ratio (FER) criterion is introduced to reconstruct the bearing vibration signal. Secondly, the multiscale permutation entropy of the reconstructed signal is calculated to construct multidimensional feature vectors. Finally, the constructed multidimensional feature vector is fed into the PSO-SVM classification model for automatic identification of different fault patterns of the rolling bearing. Two experimental cases are adopted to validate the effectiveness of the proposed method. Experimental results show that the proposed method can achieve a higher identification accuracy compared with some similar available methods (e.g., variational mode decomposition-based multiscale sample entropy (VMD-MSE), variational mode decomposition-based multiscale fuzzy entropy (VMD-MFE), empirical mode decomposition-based multiscale permutation entropy (EMD-MPE) and wavelet transform-based multiscale permutation entropy (WT-MPE)).

5.
Entropy (Basel) ; 23(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34828071

RESUMO

Wind turbine gearboxes operate in harsh environments; therefore, the resulting gear vibration signal has characteristics of strong nonlinearity, is non-stationary, and has a low signal-to-noise ratio, which indicates that it is difficult to identify wind turbine gearbox faults effectively by the traditional methods. To solve this problem, this paper proposes a new fault diagnosis method for wind turbine gearboxes based on generalized composite multiscale Lempel-Ziv complexity (GCMLZC). Within the proposed method, an effective technique named multiscale morphological-hat convolution operator (MHCO) is firstly presented to remove the noise interference information of the original gear vibration signal. Then, the GCMLZC of the filtered signal was calculated to extract gear fault features. Finally, the extracted fault features were input into softmax classifier for automatically identifying different health conditions of wind turbine gearboxes. The effectiveness of the proposed method was validated by the experimental and engineering data analysis. The results of the analysis indicate that the proposed method can identify accurately different gear health conditions. Moreover, the identification accuracy of the proposed method is higher than that of traditional multiscale Lempel-Ziv complexity (MLZC) and several representative multiscale entropies (e.g., multiscale dispersion entropy (MDE), multiscale permutation entropy (MPE) and multiscale sample entropy (MSE)).

6.
Sensors (Basel) ; 20(15)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759788

RESUMO

The vibration signal induced by bearing local fault has strong nonstationary and nonlinear property, which indicates that the conventional methods are difficult to recognize bearing fault patterns effectively. Hence, to obtain an efficient diagnosis result, the paper proposes an intelligent fault diagnosis approach for rolling bearing integrated symplectic geometry mode decomposition (SGMD), improved multiscale symbolic dynamic entropy (IMSDE) and multiclass relevance vector machine (MRVM). Firstly, SGMD is employed to decompose the original bearing vibration signal into several symplectic geometry components (SGC), which is aimed at reconstructing the original bearing vibration signal and achieving the purpose of noise reduction. Secondly, the bat algorithm (BA)-based optimized IMSDE is presented to evaluate the complexity of reconstruction signal and extract bearing fault features, which can solve the problems of missing of partial fault information existing in the original multiscale symbolic dynamic entropy (MSDE). Finally, IMSDE-based bearing fault features are fed to MRVM for achieving the identification of bearing fault categories. The validity of the proposed method is verified by the experimental and contrastive analysis. The results show that our approach can precisely identify different fault patterns of rolling bearings. Moreover, our approach can achieve higher recognition accuracy than several existing methods involved in this paper. This study provides a new research idea for improvement of bearing fault identification.

7.
ISA Trans ; 146: 451-462, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320915

RESUMO

Remaining useful life (RUL) prediction and degradation assessment are pivotal components of prognostic and health management (PHM) and represent vital tasks in the implementation of predictive maintenance for bearings. In recent years, data-driven PHM techniques for bearings have made substantial progress through the integration of deep learning methods. However, modeling the temporal dependencies inherent in raw vibration signals for both degradation assessment and RUL prediction remains a significant challenge. Hence, we propose a joint optimization architecture that uses a temporal convolutional auto-encoder (TCAE) for the degradation assessment and RUL prediction of bearings. Specifically, the architecture includes a sequence-to-sequence model to extract degradation-sensitive features from the raw signal and utilizes temporal distribution characterization (TDC) and a nonlinear regressor to determine the degradation stages and predict RUL, respectively. Our framework integrates the tasks of degradation assessment and RUL prediction in a unified, end-to-end manner, using raw signals as input, resulting in high RUL prediction accuracy (RMSE = 0.0832) on publicly available and self-built datasets. Our approach outperforms state-of-the-art methods, indicating its potential to significantly advance the field of PHM for bearings.

8.
IEEE Trans Neural Netw Learn Syst ; 34(9): 6339-6353, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34986104

RESUMO

The industrial gearboxes usually work in harsh and variable conditions, which results in partial failure of gears or bearings. Accordingly, the continuous irregular fluctuations of gearbox under variable conditions maybe increase the intraclass difference and reduce the interclass difference for the monitored samples. To this end, a new intelligent fault diagnosis method of gearbox based on adaptive intraclass and interclass convolutional neural network (AIICNN) under variable working conditions is proposed. The core of the proposed algorithm is to apply the designed intraclass and interclass constraints to improve the distribution differences of samples. Meanwhile, the adaptive activation function is added into the 1-D convolutional neural network (1dCNN) to enlarge the heterogeneous distance and narrow the homogeneous distance of samples. Specifically, the training sample subset with intraclass and interclass spacing fluctuations under variable conditions is first converted into frequency domain through the fast Fourier transform (FFT), and the designed AIICNN algorithm is employed for model training. Afterward, the testing subset is provided to the trained AIICNN algorithm for fault diagnosis. The experimental data of the planetary gearbox test rig verify the feasibility of the proposed diagnosis method and algorithm. Compared with other methods, this method can eliminate the difference of sample distribution under variable conditions and improve its diagnostic generalization.

9.
Heliyon ; 8(8): e10046, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35991991

RESUMO

The sensitivity analysis model is widely used to describe the impacts of condition parameters on structural reliability. However, the classical sensitivity analysis model is limited to the small number of influence parameters and has no high prediction accuracy. Integrating the response surface function - Kriging model with Sobol sensitivity algorithm, a revised sensitivity model is proposed in this paper. And the quantitative sensitivity analysis for the influence of condition parameters on structural reliability are achieved through combining the revised sensitivity model with the experimental design of coupling parameters, range verification, the multi-body dynamics analysis and the structural statics analysis. The proposed analysis model is mainly applied in large structures with multiple influence parameters. Finally, a typical port crane is adopted to verify the accuracy and effectiveness of the proposed model. The results reveal that among the multiple parameters, the biggest sensitivity influence is the trolley position, while the least one is the lifting speed. The average prediction accuracy of the quantitative structural reliability index for the influencing parameters is up to 95.91%. The revised sensitivity model enables the accurate assessment of structural relativity with plenty of coupling condition parameters.

10.
ISA Trans ; 73: 165-180, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29331434

RESUMO

Periodic transient impulses are key indicators of rolling element bearing defects. Efficient acquisition of impact impulses concerned with the defects is of much concern to the precise detection of bearing defects. However, transient features of rolling element bearing are generally immersed in stochastic noise and harmonic interference. Therefore, in this paper, a new optimal scale morphology analysis method, named adaptive multiscale combination morphological filter-hat transform (AMCMFH), is proposed for rolling element bearing fault diagnosis, which can both reduce stochastic noise and reserve signal details. In this method, firstly, an adaptive selection strategy based on the feature energy factor (FEF) is introduced to determine the optimal structuring element (SE) scale of multiscale combination morphological filter-hat transform (MCMFH). Subsequently, MCMFH containing the optimal SE scale is applied to obtain the impulse components from the bearing vibration signal. Finally, fault types of bearing are confirmed by extracting the defective frequency from envelope spectrum of the impulse components. The validity of the proposed method is verified through the simulated analysis and bearing vibration data derived from the laboratory bench. Results indicate that the proposed method has a good capability to recognize localized faults appeared on rolling element bearing from vibration signal. The study supplies a novel technique for the detection of faulty bearing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA