Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(8): 1214-1226, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38552221

RESUMO

ConspectusChemical reactions can be promoted at lower temperatures and pressures, thereby reducing the energy input, by introducing suitable catalysts. Despite its significance, the quest for efficient and stable catalysts remains a significant challenge. In this context, addressing the efficiency of catalysts stands out as a paramount concern. However, the challenges posed by the vague structure and limited tailorability of traditional catalysts would make it highly desirable to fabricate optimized catalysts based on the understanding of structure-activity relationships. Covalent organic frameworks (COFs), a subclass of fully designed crystalline materials formed by the polymerization of organic building blocks through covalent bonds have garnered widespread attention in catalysis. The precise and customizable structures of COFs, coupled with attributes such as high surface area and facile functional modification, make COFs attractive molecular platforms for catalytic applications. These inherent advantages position COFs as ideal catalysts, facilitating the elucidation of structure-performance relationships and thereby further improving the catalysis. Nevertheless, there is a lack of systematic emphasis on and summary of structural regulation at the atomic/molecular level for COF catalysis. Consequently, there is a growing need to summarize this research field and provide deep insights into COF-based catalysis to promote its further development.In this Account, we will summarize recent advances in structural regulation achieved in COF-based catalysts, placing an emphasis on the molecular design of the structures for enhanced catalysis. Considering the unique components and structural advantages of COFs, we present the fundamental principles for the rational design of structural regulation in COF-based catalysis. This Account starts by presenting an overview of catalysis and explaining why COFs are promising catalysts. Then, we introduce the molecular design principle for COF catalysis. Next, we present the following three aspects of the specific strategies for structural regulation of COF-based catalysts: (1) By designing different functional groups and integrating metal species into the organic unit, the activity and/or selectivity can be finely modulated. (2) Regulating the linkage facilitates charge transfer and/or modulates the electronic structure of catalytic metal sites, and accordingly, the intrinsic activity/selectivity can be further improved. (3) By means of pore wall/space engineering, the microenvironment surrounding catalytic metal sites can be modulated to optimize performance. Finally, the current challenges and future developments in the structural regulation of COF-based catalysts are discussed in detail. This Account provides insight into the structural regulation of COF-based catalysts at the atomic/molecular level toward improving their performance, which would provide significant inspiration for the design and structural regulation of other heterogeneous catalysts.

2.
J Am Chem Soc ; 146(15): 10798-10805, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579304

RESUMO

Though the coordination environment of single metal sites has been recognized to be of great importance in promoting catalysis, the influence of simultaneous precise modulation of primary and secondary coordination spheres on catalysis remains largely unknown. Herein, a series of single Ni(II) sites with altered primary and secondary coordination spheres have been installed onto metal-organic frameworks (MOFs) with UiO-67 skeleton, affording UiO-Ni-X-Y (X = S, O; Y = H, Cl, CF3) with X and Y on the primary and secondary coordination spheres, respectively. Upon deposition with CdS nanoparticles, the resulting composites present high photocatalytic H2 production rates, in which the optimized CdS/UiO-Ni-S-CF3 exhibits an excellent activity of 13.44 mmol g-1, ∼500 folds of the pristine catalyst (29.6 µmol g-1 for CdS/UiO), in 8 h, highlighting the key role of microenvironment modulation around Ni sites. Charge kinetic analysis and theoretical calculation results demonstrate that the charge transfer dynamics and reaction energy barrier are closely correlated with their coordination spheres. This work manifests the advantages of MOFs in the fabrication of structurally precise catalysts and the elucidation of particular influences of microenvironment modulation around single metal sites on the catalytic performance.

3.
J Am Chem Soc ; 146(13): 9026-9035, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38441064

RESUMO

The introduction of single or multiple heterometal atoms into metal nanoparticles is a well-known strategy for altering their structures (compositions) and properties. However, surface single nonmetal atom doping is challenging and rarely reported. For the first time, we have developed synthetic methods, realizing "surgery"-like, successive surface single nonmetal atom doping, replacement, and addition for ultrasmall metal nanoparticles (metal nanoclusters, NCs), and successfully synthesized and characterized three novel bcc metal NCs Au38I(S-Adm)19, Au38S(S-Adm)20, and Au38IS(S-Adm)19 (S-Adm: 1-adamantanethiolate). The influences of single nonmetal atom replacement and addition on the NC structure and optical properties (including absorption and photoluminescence) were carefully investigated, providing insights into the structure (composition)-property correlation. Furthermore, a bottom-up method was employed to construct a metal-organic framework (MOF) on the NC surface, which did not essentially alter the metal NC structure but led to the partial release of surface ligands and stimulated metal NC activity for catalyzing p-nitrophenol reduction. Furthermore, surface MOF construction enhanced NC stability and water solubility, providing another dimension for tunning NC catalytic activity by modifying MOF functional groups.

4.
J Am Chem Soc ; 146(5): 3241-3249, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277223

RESUMO

Photocatalytic CO2 reduction holds great potential for alleviating global energy and environmental issues, where the electronic structure of the catalytic center plays a crucial role. However, the spin state, a key descriptor of electronic properties, is largely overlooked. Herein, we present a simple strategy to regulate the spin states of catalytic Co centers by changing their coordination environment by exchanging the Co species into a stable Zn-based metal-organic framework (MOF) to afford Co-OAc, Co-Br, and Co-CN for CO2 photoreduction. Experimental and DFT calculation results suggest that the distinct spin states of the Co sites give rise to different charge separation abilities and energy barriers for CO2 adsorption/activation in photocatalysis. Consequently, the optimized Co-OAc with the highest spin-state Co sites presents an excellent photocatalytic CO2 activity of 2325.7 µmol·g-1·h-1 and selectivity of 99.1% to CO, which are among the best in all reported MOF photocatalysts, in the absence of a noble metal and additional photosensitizer. This work underlines the potential of MOFs as an ideal platform for spin-state manipulation toward improved photocatalysis.

5.
J Am Chem Soc ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987861

RESUMO

Inspired by enzymatic catalysis, it is crucial to construct hydrogen-bonding-rich microenvironment around catalytic sites; unfortunately, its precise construction and understanding how the distance between such microenvironment and catalytic sites affects the catalysis remain significantly challenging. In this work, a series of metal-organic framework (MOF)-based single-atom Ru1 catalysts, namely, Ru1/UiO-67-X (X = -H, -m-(NH2)2, -o-(NH2)2), have been synthesized, where the distance between the hydrogen-bonding microenvironment and Ru1 sites is modulated by altering the location of amino groups. The -NH2 group can form hydrogen bonds with H2O, constituting a unique microenvironment that causes an increased water concentration around the Ru1 sites. Remarkably, Ru1/UiO-67-o-(NH2)2 displays a superior photocatalytic hydrogen production rate, ∼4.6 and ∼146.6 times of Ru1/UiO-67-m-(NH2)2 and Ru1/UiO-67, respectively. Both experimental and computational results suggest that the close proximity of amino groups to the Ru1 sites in Ru1/UiO-67-o-(NH2)2 improves charge transfer and H2O dissociation, accounting for the promoted photocatalytic hydrogen production.

6.
Angew Chem Int Ed Engl ; : e202410097, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953455

RESUMO

While supported metal nanoparticles (NPs) have shown significant promise in heterogeneous catalysis, precise control over their interaction with the support, which profoundly impacts their catalytic performance, remains a significant challenge. In this study, Pt NPs are incorporated into thioether-functionalized covalent organic frameworks (denoted COF-Sx), enabling precise control over the size and electronic state of Pt NPs by adjusting the thioether density dangling on the COF pore walls. Notably, the resulting Pt@COF-Sx demonstrate exceptional selectivity (>99%) in catalytic hydrogenation of p-chloronitrobenzene to p-chloroaniline, in sharp contrast to the poor selectivity of Pt NPs embedded in thioether-free COFs. Furthermore, the conversion over Pt@COF-Sx exhibits a volcano-type curve as the thioether density increases, due to the corresponding change of accessible Pt sites. This work provides an effective approach to regulating the catalysis of metal NPs via their microenvironment modulation, with the aid of rational design and precise tailoring of support structure.

7.
Angew Chem Int Ed Engl ; 63(17): e202401443, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38407530

RESUMO

Atomically precise metal nanoclusters (NCs) with unique optical properties and abundant catalytic sites are promising in photocatalysis. However, their light-induced instability and the difficulty of utilizing the photogenerated carriers for photocatalysis pose significant challenges. Here, MAg24 (M=Ag, Pd, Pt, and Au) NCs doped with diverse single heteroatoms have been encapsulated in a metal-organic framework (MOF), UiO-66-NH2, affording MAg24@UiO-66-NH2. Strikingly, compared with Ag25@UiO-66-NH2, the MAg24@UiO-66-NH2 doped with heteroatom exhibits much enhanced activity in photocatalytic hydrogen production, among which AuAg24@UiO-66-NH2 presents the best activity up to 3.6 mmol g-1 h-1, far superior to all other counterparts. Moreover, they display excellent photocatalytic recyclability and stability. X-ray photoelectron spectroscopy and ultrafast transient absorption spectroscopy demonstrate that MAg24 NCs encapsulated into the MOF create a favorable charge transfer pathway, similar to a Z-scheme heterojunction, when exposed to visible light. This promotes charge separation, along with optimized Ag electronic state, which are responsible for the superior activity in photocatalytic hydrogen production.

8.
Angew Chem Int Ed Engl ; 63(10): e202318338, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38230982

RESUMO

Carbon-based single-atom catalysts (SACs) have attracted tremendous interest in heterogeneous catalysis. However, the common electric heating techniques to produce carbon-based SACs usually suffer from prolonged heating time and tedious operations. Herein, a general and facile microwave-assisted rapid pyrolysis method is developed to afford carbon-based SACs within 3 min without inert gas protection. The obtained carbon-based SACs present high porosity and comparable carbonization degree to those obtained by electric heating techniques. Specifically, the single-atom Ni implanted N-doped carbon (Ni1 -N-C) derived from a Ni-doped metal-organic framework (Ni-ZIF-8) exhibits remarkable CO Faradaic efficiency (96 %) with a substantial CO partial current density (jCO ) up to 1.06 A/cm2 in CO2 electroreduction, far superior to the counterpart obtained by traditional pyrolysis with electric heating. Mechanism investigations reveal that the resulting Ni1 -N-C presents abundant defective sites and mesoporous structure, greatly facilitating CO2 adsorption and mass transfer. This work establishes a versatile approach to rapid and large-scale synthesis of SACs as well as other carbon-based materials for efficient catalysis.

9.
Angew Chem Int Ed Engl ; 63(2): e202314988, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38016926

RESUMO

Singlet oxygen (1 O2 ) is ubiquitously involved in various photocatalytic oxidation reactions; however, efficient and selective production of 1 O2 is still challenging. Herein, we reported the synthesis of nickel porphyrin-based covalent organic frameworks (COFs) incorporating functional groups with different electron-donating/-withdrawing features on their pore walls. These functional groups established a dedicated outer-sphere microenvironment surrounding the Ni catalytic center that tunes the activity of the COFs for 1 O2 -mediated thioether oxidation. With the increase of the electron-donating ability of functional groups, the modulated outer-sphere microenvironment turns on the catalytic activity from a yield of nearly zero by the cyano group functionalized COF to an excellent yield of 98 % by the methoxy group functionalized one. Electronic property investigation and density-functional theory (DFT) calculations suggested that the distinct excitonic behaviors attributed to the diverse band energy levels and orbital compositions are responsible for the different activities. This study represents the first regulation of generating reactive oxygen species (ROS) based on the strategy of outer-sphere microenvironment modulation in COFs.

10.
Angew Chem Int Ed Engl ; 63(28): e202405027, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38656532

RESUMO

A novel class of crystalline porous materials has been developed utilizing multilevel dynamic linkages, including covalent B-O, dative B←N and hydrogen bonds. Typically, boronic acids undergo in situ condensation to afford B3O3-based units, which further extend to molecular complexes or chains via B←N bonds. The obtained superstructures are subsequently interconnected via hydrogen bonds and π-π interactions, producing crystalline porous organic frameworks (CPOFs). The CPOFs display excellent solution processability, allowing dissolution and subsequent crystallization to their original structures, independent of recrystallization conditions, possibly due to the diverse bond energies of the involved interactions. Significantly, the CPOFs can be synthesized on a gram-scale using cost-effective monomers. In addition, the numerous acidic sites endow the CPOFs with high NH3 capacity, surpassing most porous organic materials and commercial materials.

11.
J Am Chem Soc ; 145(2): 1359-1366, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36599106

RESUMO

Covalent organic framework (COF) chemistry is experiencing unprecedented development in recent decades. The current studies on COF chemistry are mainly focused on the discovery of novel covalent linkages, new topological structures, synthetic methodologies, and potential applications. However, despite the fact that noncovalent interactions are ubiquitous in COF chemistry, relatively little attention has been given to the role of noncovalent bonds on COF structures and their properties. In this work, a series of hydrazone-linked COFs involving noncovalent hydrogen bonds have been constructed, where the hydrogen-bonding interaction plays critical roles in the COF crystallinity and structures. The regulation of structural flexibility, the reversible transition between order and disorder, and the variety of host-guest interactions have been demonstrated in succession for the first time in COFs. The results obtained by the hydrogen-bonding-regulated strategy may also be extendable to other noncovalent interactions, such as π-π interactions, metal coordination interactions, Lewis acid-base interactions, etc. These findings will inspire future developments in the design, synthesis, structural regulation, and applications of COFs by manipulating noncovalent interactions.

12.
J Am Chem Soc ; 145(40): 21974-21982, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37779433

RESUMO

Covalent organic frameworks (COFs) with a periodic network of permanent porosity and ordered structures have witnessed enormous potential in many applications. However, the synthesis of COFs with controllable morphologies under mild conditions remains a critical issue. Herein, we report a novel strategy to synthesize ß-ketoenamine-linked COFs by emulsion polymerization via phase transfer catalysis for the first time. This new approach employs commercially available pyridinium surfactants as emulsifiers for emulsion polymerization, which function as both catalysts and morphological regulators. By controlling the interfacial interaction in the emulsion, the TpPa-COF can be prepared into different morphologies, i.e., spheres, bowls, and fibers. Furthermore, the COF emulsion can be directly used to prepare a film by applying an electric field, providing a new route to prepare COF films. This phase transfer catalysis method also allows the synthesis of the TpPa-COF on a gram scale. The strategy is fast, facile, and effective in improving the morphology and particle size, providing a prospective route for the green preparation of functional COFs.

13.
J Am Chem Soc ; 145(17): 9665-9671, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37083367

RESUMO

The fabricating of metal-organic frameworks (MOFs) that integrate high stability and functionality remains a long-term pursuit yet a great challenge. Herein, we develop a linker desymmetrization strategy to construct highly stable porphyrinic MOFs, namely, USTC-9 (USTC represents the University of Science and Technology of China), presenting the same topological structure as the well-known PCN-600 that readily loses crystallinity in air or upon conventional activation. For USTC-9, the involved porphyrinic linker (TmCPP-M) with carboxylate groups located in the meta-position presents a chair-shaped conformation with lower C2h symmetry than that (D4h) of the common porphyrinic carboxylate (TCPP) linker in PCN-600. As a result, the wrinkled and interlocked linker arrangements collectively contribute to the remarkable stability of USTC-9. Given the high stability and porosity as well as Lewis acidity, USTC-9(Fe) demonstrates its excellent performance toward catalytic CO2 cycloaddition with diverse epoxides at moderate temperature and atmospheric pressure.

14.
J Am Chem Soc ; 145(44): 24230-24239, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37890005

RESUMO

Developing an electrocatalyst platform that can control the interplay among activity, selectivity, and stability at atomic precision remains a grand challenge. Here, we have synthesized highly crystalline polymetallophthalocyanines (pMPcs, M = Fe, Co, Ni, and Cu) through the annulation of tetracyanobenzene in the presence of transition metals. The conjugated, conductive, and stable backbones with precisely installed metal sites render pMPcs a unique platform in electrochemical catalysis, where tunability emerges from long-range interactions. The construction of pCoNiPc with a Co and Ni dual-site integrates the advantageous features of pCoPc and pNiPc in electrocatalytic CO2 reduction through electronic communication of the dual-site with an unprecedented long atomic separation of ≥14 chemical bonds. This integration provides excellent activity (current density, j = -16.0 and -100 mA cm-2 in H-type and flow cell, respectively), selectivity (CO Faraday efficiency, FECO = 94%), and stability (>10 h), making it one of the best-performing reticular materials.

15.
J Am Chem Soc ; 145(5): 3248-3254, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36718987

RESUMO

Benefiting from their unique structural merits, three-dimensional (3D) large-pore COF materials demonstrate high surface areas and interconnected large channels, which makes these materials promising in practical applications. Unfortunately, functionalization strategies and application research are still absent in these structures. To this end, a series of functional 3D stp-topologized COFs are designed based on porphyrin or metalloporphyrin moieties, named JUC-640-M (M = Co, Ni, or H). Interestingly, JUC-640-H exhibits a record-breaking low crystal density (0.106 cm3 g-1) among all crystalline materials, along with the largest interconnected pore size (4.6 nm) in 3D COFs, high surface area (2204 m2 g-1), and abundant exposed porphyrin moieties (0.845 mmol g-1). Inspired by the unique structural characteristics and photoelectrical performance, JUC-640-Co is utilized for the photoreduction of CO2 to CO and demonstrates a high CO production rate (15.1 mmol g-1 h-1), selectivity (94.4%), and stability. It should be noted that the CO production rate of JUC-640-Co has exceeded those of all reported COF-based materials. This work not only produces a series of novel 3D COFs with large channels but also provides a new guidance for the functionalization and applications of COFs.

16.
Chem Rev ; 121(20): 12278-12326, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34280313

RESUMO

Metal-organic frameworks (MOFs) have been widely recognized as one of the most fascinating classes of materials from science and engineering perspectives, benefiting from their high porosity and well-defined and tailored structures and components at the atomic level. Although their intrinsic micropores endow size-selective capability and high surface area, etc., the narrow pores limit their applications toward diffusion-control and large-size species involved processes. In recent years, the construction of hierarchically porous MOFs (HP-MOFs), MOF-based hierarchically porous composites, and MOF-based hierarchically porous derivatives has captured widespread interest to extend the applications of conventional MOF-based materials. In this Review, the recent advances in the design, synthesis, and functional applications of MOF-based hierarchically porous materials are summarized. Their structural characters toward various applications, including catalysis, gas storage and separation, air filtration, sewage treatment, sensing and energy storage, have been demonstrated with typical reports. The comparison of HP-MOFs with traditional porous materials (e.g., zeolite, porous silica, carbons, metal oxides, and polymers), subsisting challenges, as well as future directions in this research field, are also indicated.


Assuntos
Estruturas Metalorgânicas , Catálise , Estruturas Metalorgânicas/química , Polímeros , Porosidade
17.
Angew Chem Int Ed Engl ; 62(15): e202217565, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36688729

RESUMO

Photocatalytic water splitting and carbon dioxide (CO2 ) reduction provide promising solutions to global energy and environmental issues. In recent years, metal-organic frameworks (MOFs), a class of crystalline porous solids featuring well-defined and tailorable structures as well as high surface areas, have captured great interest toward photocatalytic water splitting and CO2 reduction. In this review, the semiconductor-like behavior of MOFs is first discussed. We then summarize the recent advances in photocatalytic water splitting and CO2 reduction over MOF-based materials and focus on the unique advantage of MOFs for clarifying the structure-property relationship in photocatalysis. In addition, some representative characterization techniques have been presented to unveil the photocatalytic kinetics and reaction intermediates in MOF-based systems. Finally, the challenges, and perspectives for future directions are proposed.

18.
Angew Chem Int Ed Engl ; 62(38): e202308089, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37551837

RESUMO

The development of heterogeneous asymmetric catalysts has attracted increasing interest in synthetic chemistry but mostly relies on the immobilization of homogeneous chiral catalysts. Herein, a series of chiral metal-organic frameworks (MOFs) have been fabricated by anchoring similar chiral hydroxylated molecules (catalytically inactive) with different lengths onto Zr-oxo clusters in achiral PCN-222(Cu). The resulting chiral MOFs exhibit regulated enantioselectivity up to 83 % ee in the asymmetric ring-opening of cyclohexene oxide. The chiral molecules furnished onto the catalytic Lewis sites in the MOF create multilevel microenvironment, including the hydrogen interaction between the substrate and the chiral -OH group, the steric hindrance endowed by the benzene ring on the chiral molecules, and the proximity between the catalytic sites and chiral molecules confined in the MOF pores, which play crucial roles and synergistically promote chiral catalysis. This work nicely achieves heterogeneous enantioselective catalysis by chiral microenvironment modulation around Lewis acid sites.

19.
Angew Chem Int Ed Engl ; 62(31): e202306135, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37255487

RESUMO

Covalent organic frameworks (COFs), possessing pre-designable structures and tailorable functionalities, are promising candidates for photocatalysis. Nevertheless, the most studied imine-linked COFs (Im-COFs) usually suffer from unsatisfactory stability and photocatalytic performance. To meet this challenge, a series of highly stable enaminone-linked COFs (En-COFs) have been synthesized and afford much improved visible-light-driven hydrogen production activities, ranging from 44 to 1078 times that of isoreticular Im-COFs, with the only difference being the linkages (enaminone vs. imine) in their structures. The enhanced light-harvesting ability, facilitated exciton dissociation and improved chemical stability account for the superior activity. Furthermore, quinoline-linked COFs (Qu-COFs) have been further obtained via the post-modification of Im-COFs. Compared with Im-COFs, the photocatalytic activities of Qu-COFs are significantly improved after modification, but still below those of the corresponding En-COFs (3-107 times). The facile synthesis, excellent activity, and high chemical stability demonstrate that En-COFs are a promising platform for photocatalysis.

20.
Angew Chem Int Ed Engl ; 62(26): e202305212, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37129888

RESUMO

The chemical microenvironment modulation of metal nanoparticles (NPs) holds promise for tackling the long-lasting challenge of the trade-off effect between activity and selectivity in catalysis. Herein, ultrafine PdCu2 NPs incorporated into covalent organic frameworks (COFs) with diverse groups on their pore walls have been fabricated for the semihydrogenation of alkynes. The Cu species, as the primary microenvironment of Pd active sites, greatly improves the selectivity. The functional groups as the secondary microenvironment around PdCu2 NPs effectively regulate the activity, in which PdCu2 NPs encapsulated in the COF bearing -CH3 groups exhibit the highest activity with >99 % conversion and 97 % selectivity. Both experimental and calculation results suggest that the functional group affects the electron-donating ability of the COFs, which successively impacts the charge transfer between COFs and Pd sites, giving rise to a modulated Pd electronic state and excellent catalytic performance.


Assuntos
Nanopartículas Metálicas , Estruturas Metalorgânicas , Alcinos , Catálise , Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA