Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biodes Manuf ; 6(3): 319-339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36713614

RESUMO

In modern terminology, "organoids" refer to cells that grow in a specific three-dimensional (3D) environment in vitro, sharing similar structures with their source organs or tissues. Observing the morphology or growth characteristics of organoids through a microscope is a commonly used method of organoid analysis. However, it is difficult, time-consuming, and inaccurate to screen and analyze organoids only manually, a problem which cannot be easily solved with traditional technology. Artificial intelligence (AI) technology has proven to be effective in many biological and medical research fields, especially in the analysis of single-cell or hematoxylin/eosin stained tissue slices. When used to analyze organoids, AI should also provide more efficient, quantitative, accurate, and fast solutions. In this review, we will first briefly outline the application areas of organoids and then discuss the shortcomings of traditional organoid measurement and analysis methods. Secondly, we will summarize the development from machine learning to deep learning and the advantages of the latter, and then describe how to utilize a convolutional neural network to solve the challenges in organoid observation and analysis. Finally, we will discuss the limitations of current AI used in organoid research, as well as opportunities and future research directions.

2.
Genomics Proteomics Bioinformatics ; 21(2): 243-258, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36640825

RESUMO

Organs-on-a-chip is a microfluidic microphysiological system that uses microfluidic technology to analyze the structure and function of living human cells at the tissue and organ levels in vitro. Organs-on-a-chip technology, as opposed to traditional two-dimensional cell culture and animal models, can more closely simulate pathologic and toxicologic interactions between different organs or tissues and reflect the collaborative response of multiple organs to drugs. Despite the fact that many organs-on-a-chip-related data have been published, none of the current databases have all of the following functions: searching, downloading, as well as analyzing data and results from the literature on organs-on-a-chip. Therefore, we created an organs-on-a-chip database (OOCDB) as a platform to integrate information about organs-on-a-chip from various sources, including literature, patents, raw data from microarray and transcriptome sequencing, several open-access datasets of organs-on-a-chip and organoids, and data generated in our laboratory. OOCDB contains dozens of sub-databases and analysis tools, and each sub-database contains various data associated with organs-on-a-chip, with the goal of providing researchers with a comprehensive, systematic, and convenient search engine. Furthermore, it offers a variety of other functions, such as mathematical modeling, three-dimensional modeling, and citation mapping, to meet the needs of researchers and promote the development of organs-on-a-chip. The OOCDB is available at http://www.organchip.cn.


Assuntos
Técnicas de Cultura de Células , Sistemas Microfisiológicos , Animais , Humanos , Bases de Dados Factuais
3.
Bioengineering (Basel) ; 9(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36421086

RESUMO

Organ-on-a-chip (OOC) provides microphysiological conditions on a microfluidic chip, which makes up for the shortcomings of traditional in vitro cellular culture models and animal models. It has broad application prospects in drug development and screening, toxicological mechanism research, and precision medicine. A large amount of data could be generated through its applications, including image data, measurement data from sensors, ~omics data, etc. A database with proper architecture is required to help scholars in this field design experiments, organize inputted data, perform analysis, and promote the future development of novel OOC systems. In this review, we overview existing OOC databases that have been developed, including the BioSystics Analytics Platform (BAP) developed by the University of Pittsburgh, which supports study design as well as data uploading, storage, visualization, analysis, etc., and the organ-on-a-chip database (Ocdb) developed by Southeast University, which has collected a large amount of literature and patents as well as relevant toxicological and pharmaceutical data and provides other major functions. We used examples to overview how the BAP database has contributed to the development and applications of OOC technology in the United States for the MPS consortium and how the Ocdb has supported researchers in the Chinese Organoid and Organs-On-A-Chip society. Lastly, the characteristics, advantages, and limitations of these two databases were discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA