Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Trends Biochem Sci ; 44(3): 273-292, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30415968

RESUMO

Cholesterol is dynamically transported among membrane-bound organelles primarily by nonvesicular mechanisms. Sterol transfer proteins (STPs) bind cholesterol in their hydrophobic pockets and facilitate its transfer across the aqueous cytosol. However, STPs alone may not account for the specific and efficient movement of cholesterol between intracellular membranes. Accumulating evidence has shown that membrane contact sites (MCSs), regions where two distinct organelles are in close apposition to one another, can facilitate STP-mediated cholesterol trafficking in a cell. At some MCSs, cholesterol can move against its concentration by using phosphatidylinositol 4-phosphate (PI4P) metabolism as the driving force. Finally, the emergence of more MCSs and the discovery of a new STP family further highlight the crucial roles of MCSs and STPs in intracellular cholesterol transport.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Animais , Transporte Biológico/fisiologia , Humanos , Fosfatos de Fosfatidilinositol/metabolismo
2.
J Lipid Res ; 64(12): 100465, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37890669

RESUMO

Accurate intracellular cholesterol traffic plays crucial roles. Niemann Pick type C (NPC) proteins NPC1 and NPC2, are two lysosomal cholesterol transporters that mediate the cholesterol exit from lysosomes. However, other proteins involved in this process remain poorly defined. Here, we find that the previously unannotated protein TMEM241 is required for cholesterol egressing from lysosomes through amphotericin B-based genome-wide CRISPR-Cas9 KO screening. Ablation of TMEM241 caused impaired sorting of NPC2, a protein utilizes the mannose-6-phosphate (M6P) modification for lysosomal targeting, resulting in cholesterol accumulation in the lysosomes. TMEM241 is a member of solute transporters 35 nucleotide sugar transporters family and localizes on the cis-Golgi network. Our data indicate that TMEM241 transports UDP-N-acetylglucosamine (UDP-GlcNAc) into Golgi lumen and UDP-GlcNAc is used for the M6P modification of proteins including NPC2. Furthermore, Tmem241-deficient mice display cholesterol accumulation in pulmonary cells and behave pulmonary injury and hypokinesia. Taken together, we demonstrate that TMEM241 is a Golgi-localized UDP-GlcNAc transporter and loss of TMEM241 causes cholesterol accumulation in lysosomes because of the impaired M6P-dependent lysosomal targeting of NPC2.


Assuntos
Colesterol , Proteínas de Transporte Vesicular , Animais , Camundongos , Proteínas de Transporte Vesicular/metabolismo , Colesterol/metabolismo , Difosfato de Uridina/metabolismo , Lisossomos/metabolismo
3.
BMC Vet Res ; 16(1): 136, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32408873

RESUMO

BACKGROUND: Mastitis is the most frequent diseases for transition cows. Identification of potential biomarkers for diagnosis of mastitis is important for its prevention. Thus, this study was conducted to investigate blood variables related to lipid metabolism, oxidative stress and inflammation, and serum variables that are related to health in postpartum cows. RESULTS: Seventy-six healthy Holstein dairy cows at week 4 before calving were selected to collect blood samples from weeks - 4 to 4 weekly relative to calving, respectively. Milk yield and composition were recorded weekly. According to the cut-off of somatic cell counts (SCC) for diagnosis of mastitis, 33 cows with SCC ≥ 500,000 cells ml- 1, 20 cows with 200,000 cells ≤ SCC < 500,000 cells ml- 1, and 23 cows with SCC < 200,000 cells ml- 1 were defined as high, middle, and low SCC, respectively. Serum concentrations of ß-hydroxybutyrate were higher (P < 0.01) during all weeks, and non-esterified fatty acids were higher in high SCC than in low SCC cows from weeks - 3 to 2 relative to calving. Higher serum concentrations of superoxide dismutase (P < 0.01) and lower malondialdehyde levels (P < 0.01) in low SCC than in high SCC cows indicate that the latter suffered from oxidative stress. The difference analysis of the three groups suggested that none of the above-mentioned variables can be used as potential prognostic candidates. On the other hand, high SCC cows exhibited higher blood neutrophil to lymphocyte ratio (NLR, P < 0.01) and platelet to lymphocyte ratio (PLR, P < 0.01) than low SCC cows, with a higher NLR (P < 0.01) in middle SCC than in low SCC cows. The high SCC cows had lower levels of anti-inflammatory factors including IL-10 (P = 0.05), but higher levels of proinflammatory factors such as IL-6 (P < 0.01), TNF-α (P < 0.05), and PSGL-1 (P < 0.01) than low SCC cows. CONCLUSIONS: The significantly different NLR and PLR pre-partum between the middle and low SCC cows suggest their prognostic potential for postpartum mastitis risk.


Assuntos
Mastite Bovina/diagnóstico , Mastite Bovina/imunologia , Gravidez/fisiologia , Ácido 3-Hidroxibutírico/sangue , Animais , Biomarcadores/sangue , Contagem de Células Sanguíneas/veterinária , Bovinos , Ácidos Graxos não Esterificados/sangue , Feminino , Lactação , Metabolismo dos Lipídeos , Mastite Bovina/sangue , Leite/citologia , Estresse Oxidativo , Período Pós-Parto
4.
J Lipid Res ; 60(10): 1765-1775, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31455613

RESUMO

Sterol-regulated HMG-CoA reductase (HMGCR) degradation and SREBP-2 cleavage are two major feedback regulatory mechanisms governing cholesterol biosynthesis. Reportedly, lanosterol selectively stimulates HMGCR degradation, and cholesterol is a specific regulator of SREBP-2 cleavage. However, it is unclear whether other endogenously generated sterols regulate these events. Here, we investigated the sterol intermediates from the mevalonate pathway of cholesterol biosynthesis using a CRISPR/Cas9-mediated genetic engineering approach. With a constructed HeLa cell line expressing the mevalonate transporter, we individually deleted genes encoding major enzymes in the mevalonate pathway, used lipidomics to measure sterol intermediates, and examined HMGCR and SREBP-2 statuses. We found that the C4-dimethylated sterol intermediates, including lanosterol, 24,25-dihydrolanosterol, follicular fluid meiosis activating sterol, testis meiosis activating sterol, and dihydro-testis meiosis activating sterol, were significantly upregulated upon mevalonate loading. These intermediates augmented both degradation of HMGCR and inhibition of SREBP-2 cleavage. The accumulated lanosterol induced rapid degradation of HMGCR, but did not inhibit SREBP-2 cleavage. The newly synthesized cholesterol from the mevalonate pathway is dispensable for inhibiting SREBP-2 cleavage. Together, these results suggest that lanosterol is a bona fide endogenous regulator that specifically promotes HMGCR degradation, and that other C4-dimethylated sterol intermediates may regulate both HMGCR degradation and SREBP-2 cleavage.


Assuntos
Hidroximetilglutaril-CoA Redutases/metabolismo , Lanosterol/metabolismo , Ácido Mevalônico/metabolismo , Proteólise , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Retroalimentação Fisiológica , Células HeLa , Humanos , Lanosterol/química , Metilação
5.
J Biol Chem ; 293(11): 4047-4055, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29374057

RESUMO

Cholesterol biosynthesis is tightly regulated in the cell. For example, high sterol concentrations can stimulate degradation of the rate-limiting cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase, HMGCR). HMGCR is broken down by the endoplasmic reticulum membrane-associated protein complexes consisting of insulin-induced genes (Insigs) and the E3 ubiquitin ligase gp78. Here we found that HMGCR degradation is partially blunted in Chinese hamster ovary (CHO) cells lacking gp78 (gp78-KO). To identify other ubiquitin ligase(s) that may function together with gp78 in triggering HMGCR degradation, we performed a small-scale short hairpin RNA-based screening targeting endoplasmic reticulum-localized E3s. We found that knockdown of both ring finger protein 145 (Rnf145) and gp78 genes abrogates sterol-induced degradation of HMGCR in CHO cells. We also observed that RNF145 interacts with Insig-1 and -2 proteins and ubiquitinates HMGCR. Moreover, the tetrapeptide sequence YLYF in the sterol-sensing domain and the Cys-537 residue in the RING finger domain were essential for RNF145 binding to Insigs and RNF145 E3 activity, respectively. Of note, amino acid substitutions in the YLYF or of Cys-537 completely abolished RNF145-mediated HMGCR degradation. In summary, our study reveals that RNF145, along with gp78, promotes HMGCR degradation in response to elevated sterol levels and identifies residues essential for RNF145 function.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hidroximetilglutaril-CoA Redutases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteólise , Receptores do Fator Autócrino de Motilidade/metabolismo , Esteróis/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Retículo Endoplasmático/efeitos dos fármacos , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Receptores do Fator Autócrino de Motilidade/genética , Ubiquitina/metabolismo , Ubiquitinação
6.
Bioorg Med Chem ; 22(15): 4285-92, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24916028

RESUMO

A series of novel (E)-3-(3,4-dihydroxyphenyl)acrylylpiperazine derivatives had been synthesized and evaluated their biological activities as potential tubulin polymerization inhibitors. Among these compounds, compound 3q exhibited potent antiproliferative activities against three cancer cell lines in vitro, and antitubulin polymerization activity with IC50 of 0.92 µM, which was superior to that of colchicine (IC50=1.34 µM). Docking simulation was performed to insert compound 3q into the crystal structure of tubulin at colchicine binding site to determine the probable binding model. These results suggested that compound 3q may be a promising antitubulin agent for the potential treatment of cancer.


Assuntos
Desenho de Fármacos , Piperazinas/química , Piperazinas/farmacologia , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/química , Animais , Sítios de Ligação , Encéfalo/metabolismo , Bovinos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Colchicina/química , Colchicina/metabolismo , Humanos , Simulação de Acoplamento Molecular , Piperazinas/síntese química , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química
7.
Cancer Cell ; 41(7): 1276-1293.e11, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37244259

RESUMO

The concept of targeting cholesterol metabolism to treat cancer has been widely tested in clinics, but the benefits are modest, calling for a complete understanding of cholesterol metabolism in intratumoral cells. We analyze the cholesterol atlas in the tumor microenvironment and find that intratumoral T cells have cholesterol deficiency, while immunosuppressive myeloid cells and tumor cells display cholesterol abundance. Low cholesterol levels inhibit T cell proliferation and cause autophagy-mediated apoptosis, particularly for cytotoxic T cells. In the tumor microenvironment, oxysterols mediate reciprocal alterations in the LXR and SREBP2 pathways to cause cholesterol deficiency of T cells, subsequently leading to aberrant metabolic and signaling pathways that drive T cell exhaustion/dysfunction. LXRß depletion in chimeric antigen receptor T (CAR-T) cells leads to improved antitumor function against solid tumors. Since T cell cholesterol metabolism and oxysterols are generally linked to other diseases, the new mechanism and cholesterol-normalization strategy might have potential applications elsewhere.


Assuntos
Antineoplásicos , Neoplasias , Oxisteróis , Humanos , Colesterol/metabolismo , Ativação Linfocitária , Imunoterapia Adotiva , Microambiente Tumoral
8.
Front Immunol ; 13: 880578, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572521

RESUMO

The current study was conducted to analyze the functions of blood neutrophils in transition cows and their association with postpartum mastitis risk as indicated by somatic cell counts (SCCs) in milk. Seventy-six healthy Holstein dairy cows were monitored from Week 4 prepartum to Week 4 postpartum. Five dairy cows with low SCCs (38 ± 6.0 × 103/mL) and five with high SCCs (3,753 ± 570.0 × 103/mL) were selected based on milk SCCs during the first three weeks of lactation. At Week 1 pre- and postpartum, serum samples were obtained from each cow to measure neutrophil extracellular trap (NET)-related variables, and blood neutrophils were collected for transcriptome analysis by RNA sequencing. The serum concentration of NETs was significantly higher (P < 0.05) in cows with high SCCs than in cows with low SCCs (36.5 ± 2.92 vs. 18.4 ± 1.73 ng/mL). The transcriptomic analysis revealed that the transcriptome differences in neutrophils between high- and low-SCC cows were mainly in cell cycle-related pathways (42.6%), including the cell cycle, DNA damage, and chromosomal conformation, at Week 1 prepartum. The hub genes of these pathways were mainly involved in both the cell cycle and NETosis. These results indicated that the formation of NETs in the blood of transition dairy cows was different between cows with low and high SCCs, which may be used as a potential indicator for the prognosis of postpartum mastitis risk and management strategies of perinatal dairy cows.


Assuntos
Armadilhas Extracelulares , Mastite Bovina , Animais , Bovinos , Feminino , Humanos , Lactação , Leite , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA