Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Alzheimers Dement ; 18(2): 222-239, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34151525

RESUMO

The Ca2+ hypothesis for Alzheimer's disease (AD) conceives Ca2+ dyshomeostasis as a common mechanism of AD; the cause of Ca2+ dysregulation, however, is obscure. Meanwhile, hyperactivities of N-Methyl-D-aspartate receptors (NMDARs), the primary mediator of Ca2+ influx, are reported in AD. GluN3A (NR3A) is an NMDAR inhibitory subunit. We hypothesize that GluN3A is critical for sustained Ca2+ homeostasis and its deficiency is pathogenic for AD. Cellular, molecular, and functional changes were examined in adult/aging GluN3A knockout (KO) mice. The GluN3A KO mouse brain displayed age-dependent moderate but persistent neuronal hyperactivity, elevated intracellular Ca2+ , neuroinflammation, impaired synaptic integrity/plasticity, and neuronal loss. GluN3A KO mice developed olfactory dysfunction followed by psychological/cognitive deficits prior to amyloid-ß/tau pathology. Memantine at preclinical stage prevented/attenuated AD syndromes. AD patients' brains show reduced GluN3A expression. We propose that chronic "degenerative excitotoxicity" leads to sporadic AD, while GluN3A represents a primary pathogenic factor, an early biomarker, and an amyloid-independent therapeutic target.


Assuntos
Doença de Alzheimer , Receptores de N-Metil-D-Aspartato , Doença de Alzheimer/metabolismo , Animais , Humanos , Memantina/farmacologia , Memantina/uso terapêutico , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/genética
2.
Neurochem Res ; 45(2): 418-427, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31858378

RESUMO

Anesthesia in pregnant women may cause adverse effects in the hippocampus of unborn babies and fetal brain development. The mechanisms underlying pathological changes resulting from anesthetics are unclear. This study tested the hypothesis that exposure to desflurane during pregnancy may impair cognition and memory functions of juvenile offspring. Pregnant mice (at gestational day 14) were administered 10% desflurane for 3 h and compared to sham control and sciatic nerve hemi-transection surgery. Hippocampal tissues of both fetal (G14) and offspring mice (postnatal day 31) were collected and analyzed by real-time qPCR and Western blot. Functional tests were performed to assess fear and memory functions in offspring mice. Primary hippocampal neuronal cultures from postnatal day 0 (without desflurane exposure) were examined for neuronal and synaptic development under desflurane treatment in vitro. In this acute experiment, we showed that neuronal cultures exposed to desflurane significantly increased interleukin (IL)-6 expression and apoptotic gene caspase-3 activation. Desflurane exposure significantly reduced PSD-95 expression in hippocampal neurons. Similar changes were observed in hippocampal tissues from juvenile offspring mice. Inhaled desflurane impaired memory functions in offspring mice compared to sham control. These mice displayed higher sensitivity to fear conditioning. Neurons isolated from the mice exposed to desflurane exhibited significantly lower levels of synaptophysin expression. These results suggest that anesthetic exposure together with surgery during pregnancy may induce detrimental effects in juvenile offspring mice via the induction of cell death and disruption of synaptic integrity.


Assuntos
Disfunção Cognitiva/induzido quimicamente , Desflurano/toxicidade , Transtornos da Memória/induzido quimicamente , Memória/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Caspase 3/metabolismo , Disfunção Cognitiva/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Medo/efeitos dos fármacos , Feminino , Hipocampo/metabolismo , Interleucina-6/metabolismo , Masculino , Memória/fisiologia , Transtornos da Memória/metabolismo , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Sinaptofisina/metabolismo
3.
Neurobiol Dis ; 98: 9-24, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27884724

RESUMO

Neurogenesis in the subventricular zone (SVZ) of the adult brain may contribute to tissue repair after brain injuries. Whether SVZ neurogenesis can be upregulated by specific neuronal activity in vivo and promote functional recovery after stroke is largely unknown. Using the spatial and cell type specific optogenetic technique combined with multiple approaches of in vitro, ex vivo and in vivo examinations, we tested the hypothesis that glutamatergic activation in the striatum could upregulate SVZ neurogenesis in the normal and ischemic brain. In transgenic mice expressing the light-gated channelrhodopsin-2 (ChR2) channel in glutamatergic neurons, optogenetic stimulation of the glutamatergic activity in the striatum triggered glutamate release into SVZ region, evoked membrane currents, Ca2+ influx and increased proliferation of SVZ neuroblasts, mediated by AMPA receptor activation. In ChR2 transgenic mice subjected to focal ischemic stroke, optogenetic stimuli to the striatum started 5days after stroke for 8days not only promoted cell proliferation but also the migration of SVZ neuroblasts into the peri-infarct cortex with increased neuronal differentiation and improved long-term functional recovery. These data provide the first morphological and functional evidence showing a unique striatum-SVZ neuronal regulation via a semi-phasic synaptic mechanism that can boost neurogenic cascades and stroke recovery. The benefits from stimulating endogenous glutamatergic activity suggest a novel regenerative strategy after ischemic stroke and other brain injuries.


Assuntos
Corpo Estriado/metabolismo , Ácido Glutâmico/metabolismo , Neurogênese/fisiologia , Neurônios/metabolismo , Nicho de Células-Tronco/fisiologia , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Células Cultivadas , Corpo Estriado/citologia , Corpo Estriado/patologia , Modelos Animais de Doenças , Ventrículos Laterais , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/citologia , Vias Neurais/metabolismo , Vias Neurais/patologia , Neurônios/citologia , Neurônios/patologia , Optogenética , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Técnicas de Cultura de Tecidos
4.
Front Aging Neurosci ; 13: 612856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841125

RESUMO

The master neuronal transcription factor NeuroD1 can directly reprogram astrocytes into induced neurons (iNeurons) after stroke. Using viral vectors to drive ectopic ND1 expression in gliotic astrocytes after brain injury presents an autologous form of cell therapy for neurodegenerative disease. Cultured astrocytes transfected with ND1 exhibited reduced proliferation and adopted neuronal morphology within 2-3 weeks later, expressed neuronal/synaptic markers, and extended processes. Whole-cell recordings detected the firing of evoked action potentials in converted iNeurons. Focal ischemic stroke was induced in adult GFAP-Cre-Rosa-YFP mice that then received ND1 lentivirus injections into the peri-infarct region 7 days after stroke. Reprogrammed cells did not express stemness genes, while 2-6 weeks later converted cells were co-labeled with YFP (constitutively activated in astrocytes), mCherry (ND1 infection marker), and NeuN (mature neuronal marker). Approximately 66% of infected cells became NeuN-positive neurons. The majority (~80%) of converted cells expressed the vascular glutamate transporter (vGLUT) of glutamatergic neurons. ND1 treatment reduced astrogliosis, and some iNeurons located/survived inside of the savaged ischemic core. Western blotting detected higher levels of BDNF, FGF, and PSD-95 in ND1-treated mice. MultiElectrode Array (MEA) recordings in brain slices revealed that the ND1-induced reprogramming restored interrupted cortical circuits and synaptic plasticity. Furthermore, ND1 treatment significantly improved locomotor, sensorimotor, and psychological functions. Thus, conversion of endogenous astrocytes to neurons represents a plausible, on-site regenerative therapy for stroke.

5.
Aging Dis ; 9(2): 249-261, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29896414

RESUMO

A cascade of pathological processes is triggered in the lesion area after ischemic stroke. Unfortunately, our understanding of these complicated molecular events is incomplete. In this investigation, we sought to better understand the detailed molecular and inflammatory events occurring after ischemic stroke. RNA-seq technology was used to identify whole gene expression profiles at days (D1, D3, D7, D14, D21) after focal cerebral ischemia in mice. Enrichment analyses based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms for the differentially expressed genes (DEGs) were then analyzed. Inflammation-related genes that were significantly expressed after stroke were selected for analysis and the temporal expression patterns of pro-inflammatory and anti-inflammatory genes were reported. These data illustrated that the number of DEGs increased accumulatively after cerebral ischemia. In summary, there were 1967 DEGs at D1, 2280 DEGs at D3, 2631 DEGs at D7, 5516 DEGs at D14 and 7093 DEGs at D21. The significantly enriched GO terms also increased. 58 GO terms and 18 KEGG pathways were significantly enriched at all inspected time points. We identified 87 DEGs which were functionally related to inflammatory responses. The expression levels of pro-inflammation related genes CD16, CD32, CD86, CD11b, Tumour necrosis factor α (TNF-α), Interleukin 1ß (IL-1ß) increased over time and peaked at D14. Anti-inflammation related genes Arginase 1 (Arg1) and Chitinase-like 3 (Ym1) peaked at D1 while IL-10, Transforming growth factor ß (TGF-ß) and CD206, which were induced at 1 day after cerebral ischemia, peaked by 7 to 14 days. These gene profile changes were potentially linked to microglia/macrophage phenotype changes and could play a role in astroglial activation. This study supplies new insights and detailed information on the molecular events and pathological mechanisms that occur after experimental ischemic stroke.

6.
Brain Pathol ; 27(4): 480-498, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27514013

RESUMO

Focal cerebral ischemia results in an ischemic core surrounded by the peri-infarct region (penumbra). Most research attention has been focused on penumbra while the pattern of cell fates inside the ischemic core is poorly defined. In the present investigation, we tested the hypothesis that, inside the ischemic core, some neuronal and vascular cells could survive the initial ischemic insult while regenerative niches might exist many days after stroke in the adult brain. Adult mice were subjected to focal cerebral ischemia induced by permanent occlusion of distal branches of the middle cerebral artery (MCA) plus transient ligations of bilateral common carotid artery (CCA). The ischemic insult uniformly reduced the local cerebral blood flow (LCBF) by 90%. Massive cell death occurred due to multiple mechanisms and a significant infarction was cultivated in the ischemic cortex 24 h later. Nevertheless, normal or even higher levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) persistently remained in the core tissue, some NeuN-positive and Glut-1/College IV-positive cells with intact ultrastructural features resided in the core 7-14 days post stroke. BrdU-positive but TUNEL-negative neuronal and endothelial cells were detected in the core where extensive extracellular matrix infrastructure developed. Meanwhile, GFAP-positive astrocytes accumulated in the penumbra and Iba-1-positive microglial/macrophages invaded the core several days after stroke. The long term survival of neuronal and vascular cells inside the ischemic core was also seen after a severe ischemic stroke induced by permanent embolic occlusion of the MCA. We demonstrate that a therapeutic intervention of pharmacological hypothermia could save neurons/endothelial cells inside the core. These data suggest that the ischemic core is an actively regulated brain region with residual and newly formed viable neuronal and vascular cells acutely and chronically after at least some types of ischemic strokes.


Assuntos
Estenose das Carótidas/patologia , Regulação da Expressão Gênica/fisiologia , Infarto da Artéria Cerebral Média/mortalidade , Infarto da Artéria Cerebral Média/patologia , Neurônios/patologia , Regeneração/fisiologia , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Infarto Encefálico/diagnóstico por imagem , Infarto Encefálico/etiologia , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/tratamento farmacológico , Estenose das Carótidas/mortalidade , Células Cultivadas , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Transportador de Glucose Tipo 1/metabolismo , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Infarto da Artéria Cerebral Média/tratamento farmacológico , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Microglia/ultraestrutura , Neurônios/ultraestrutura , Fármacos Neuroprotetores/uso terapêutico , Oligopeptídeos/uso terapêutico , Fosfopiruvato Hidratase/metabolismo , Ligação Proteica/efeitos dos fármacos , Tubulina (Proteína)/metabolismo
7.
Prog Neurobiol ; 157: 49-78, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28322920

RESUMO

One of the exciting advances in modern medicine and life science is cell-based neurovascular regeneration of damaged brain tissues and repair of neuronal structures. The progress in stem cell biology and creation of adult induced pluripotent stem (iPS) cells has significantly improved basic and pre-clinical research in disease mechanisms and generated enthusiasm for potential applications in the treatment of central nervous system (CNS) diseases including stroke. Endogenous neural stem cells and cultured stem cells are capable of self-renewal and give rise to virtually all types of cells essential for the makeup of neuronal structures. Meanwhile, stem cells and neural progenitor cells are well-known for their potential for trophic support after transplantation into the ischemic brain. Thus, stem cell-based therapies provide an attractive future for protecting and repairing damaged brain tissues after injury and in various disease states. Moreover, basic research on naïve and differentiated stem cells including iPS cells has markedly improved our understanding of cellular and molecular mechanisms of neurological disorders, and provides a platform for the discovery of novel drug targets. The latest advances indicate that combinatorial approaches using cell based therapy with additional treatments such as protective reagents, preconditioning strategies and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the characteristics of cell therapy in different ischemic models and the application of stem cells and progenitor cells as regenerative medicine for the treatment of stroke.


Assuntos
Transplante de Células-Tronco , Acidente Vascular Cerebral/terapia , Animais , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/terapia , Humanos , Acidente Vascular Cerebral/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA