Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Insect Sci ; 30(1): 2-14, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35275442

RESUMO

The unscientific application of synthetic pesticides has brought various negative effects on the environment, hindering the sustainable development of agriculture. Nanoparticles can be applied as carriers to improve pesticide delivery, showing great potential in the development of pesticide formulation in recent years. Herein, a star polymer (SPc) was constructed as an efficient pesticide nanocarrier/adjuvant that could spontaneously assemble with thiocyclam or monosultap into a complex, through hydrophobic association and hydrogen bonding, respectively, with the pesticide-loading contents of 42.54% and 19.3%. This complexation reduced the particle sizes of thiocyclam from 543.54 to 52.74 nm for pure thiocyclam, and 3 814.16 to 1 185.89 nm for commercial preparation (cp) of thiocyclam. Interestingly, the introduction of SPc decreased the contact angles of both pure and cp thiocyclam on plant leaves, and increased the plant uptake of cp thiocyclam to 2.4-1.9 times of that without SPc. Meanwhile, the SPc could promote the bioactivity of pure/cp thiocyclam against green peach aphids through leaf dipping method and root application. For leaf dipping method, the 50% lethal concentration decreased from 0.532 to 0.221 g/L after the complexation of pure thiocyclam with SPc, and that decreased from 0.390 to 0.251 g/L for cp thiocyclam. SPc seems a promising adjuvant for nanometerization of both pure and cp insecticides, which is beneficial for improving the delivery efficiency and utilization rate of pesticides.


Assuntos
Afídeos , Inseticidas , Praguicidas , Animais , Compostos Heterocíclicos com 1 Anel , Praguicidas/química
2.
Insect Sci ; 30(3): 803-815, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36317674

RESUMO

Nano-delivery systems have been applied to deliver various synthetic/botanical pesticides to increase the efficiency of pesticide use and reduce the volumes of pesticides applied. Previous studies have supported the hypothesis that the nanocarriers can help expand the insecticidal target of pesticides to include non-target pests. However, the potential mechanism underlying this interesting phenomenon remains unclear. Herein, a widely applied star polycation (SPc) nanocarrier was synthesized to construct a thiamethoxam (TMX) nano-delivery system. The SPc-based delivery system could promote the translocation of exogenous substances across the membrane of Sf9 cells, increase the cytotoxicity of TMX against Sf9 cells by nearly 20%, and expand the insecticidal target of TMX to include Spodoptera frugiperda (the fall armyworm), with a 27.5% mortality increase at a concentration of 0.25 mg/mL. Moreover, the RNA-seq analysis demonstrated that the SPc could upregulate various transport-related genes, such as Rab, SORT1, CYTH, and PIKfyve, for the enhanced cellular uptake of TMX. Furthermore, enhanced cell death in larvae treated with the TMX-SPc complex was observed through changes in the expression levels of death-related genes, such as Casp7, BIRC5, MSK1, and PGAM5. The SPc-based nano-delivery system improved the cellular uptake of TMX and expanded its insecticidal target by adjusting the expression levels of death-related genes. The current study mainly identified the transport and cell death genes related to nanocarrier-based insecticidal target expansion, which is beneficial for understanding the bioactivity enhancement of the nano-delivery system.


Assuntos
Inseticidas , Praguicidas , Animais , Tiametoxam/metabolismo , Inseticidas/farmacologia , Inseticidas/metabolismo , Spodoptera , Praguicidas/metabolismo , Larva/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA