Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 20(29): e2400399, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38607266

RESUMO

To address the issue of bacterial growth on fresh-cut fruits, this paper reports the synthesis of nanosized γ-cyclodextrin metal-organic frameworks (CD-MOFs) using an ultrasound-assisted method and their application as carriers of limonene for antibacterial active packaging. The effects of the processing parameters on the morphology and crystallinity of the CD-MOFs are investigated, and the results prove that the addition of methanol is the key to producing nanosized CD-MOFs. The limonene loading content of the nanosized CD-MOFs can reach approximately 170 mg g-1. The sustained-release behaviors of limonene in the CD-MOFs are evaluated. Molecular docking simulations reveal the distribution and binding sites of limonene in the CD-MOFs. CD-MOFs are deposited on the surfaces of polycaprolactone (PCL) nanofibers via an immersion method, and limonene-loaded CD-MOF@PCL nanofibers are prepared. The morphology, crystallinity, thermal stability, mechanical properties, and antibacterial activity of the nanofibers are also studied. The nanofiber film effectively inhibits bacterial growth and prolongs the shelf life of fresh-cut apples. This study provides a novel strategy for developing antibacterial active packaging materials based on CD-MOFs and PCL nanofibers.


Assuntos
Frutas , Limoneno , Estruturas Metalorgânicas , Nanofibras , Poliésteres , gama-Ciclodextrinas , Limoneno/química , Limoneno/farmacologia , Nanofibras/química , Poliésteres/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , gama-Ciclodextrinas/química , Frutas/química , Terpenos/química , Terpenos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Simulação de Acoplamento Molecular
2.
Food Res Int ; 184: 114269, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609247

RESUMO

An O1/W/O2 double emulsion gel, as a functional fat substitute and based on nanoemulsions and hydrophobic Pickering particles, is prepared by two-step emulsification to co-encapsulate hydrophilic cyanidin and hydrophobic quercetin. Nanoemulsions loading quercetin are fabricated by Tween-80 and combining high-speed and high-pressure emulsification. Phytosterol nanoparticles stabilize the W-O2 interface of the secondary emulsion to load cyanidin in the W phase. The concentration of Tween-80 is optimized as 0.3% by the droplet size and viscosity of nanoemulsions. The structural stability of double emulsion gels will be weakened along with the increase of nanoemulsions, showing lower modulus and encapsulation efficiency (EE) and bigger droplets. In double emulsion gels, the EE of quercetin and cyanidin reaches 93% and 85.6%, respectively. Analysis of molecular interaction indicates that Tween-80 would decrease the in-situ hydrophobicity of phytosterol nanoparticles by hydrogen bonding adsorption, thereby weakening the emulsification. The pH-chromic 3D printing of double emulsion gels is designed according to the pH sensitivity of cyanidin. Texture profile analysis is performed to test the textural properties of 3D-printed objects. The simulated digestion is conducted on double emulsion gels. The double emulsion gel with fewer nanoemulsions is beneficial for protecting quercetin and improving the delivery due to the higher structural stability, while that with more nanoemulsions is conducive to the digestion of cyanidin and camellia oil due to weakened semi-solid properties. This double emulsion gel further simulates fat tissues by co-encapsulating hydrophilic and hydrophobic substances, promoting the application of fat substitutes in the food industry.


Assuntos
Antocianinas , Substitutos da Gordura , Fitosteróis , Emulsões , Polissorbatos , Quercetina , Géis
3.
Food Chem ; 460(Pt 3): 140699, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39116772

RESUMO

This study aimed to prepare Glucono-δ-lactone (GDL)-induced Chlorella pyrenoidosa protein (CPP) hydrogel and further investigate the effect of polysaccharides on the mechanical properties and stability enhancement of the composite hydrogels. Polysaccharides composed of different ratios of low acyl gellan gum (GE) and guar gum (GU) imparted dense honeycomb-like networks and adjustable textural properties to the composite hydrogels induced by CaCl2. In particular, the hardness of hydrogels increased significantly from 14 to 833 g. Scanning electron microscopy results revealed that CPP-GE/GU composite hydrogels had better stable spatial porous structures. Moreover, fourier transform infrared spectroscopy (FTIR) indicated hydrogen bonding interaction between CPP and GE/GU. The composite network showed improved viscoelasticity, increased thermal stability, and self-healing ability of hydrogels. The composite hydrogels also showed high water holding (89-98%) and swelling (747-862%) properties compared to the pure CPP hydrogel. These findings further expand CPP hydrogel products and broaden application in plant protein-based food.


Assuntos
Chlorella , Hidrogéis , Hidrogéis/química , Chlorella/química , Biopolímeros/química , Proteínas de Plantas/química , Mananas/química , Mananas/farmacologia , Gomas Vegetais/química , Galactanos/química , Galactanos/farmacologia
4.
Int J Biol Macromol ; 274(Pt 1): 133287, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909730

RESUMO

Inspired by the natural antimicrobial effect of the topographical features of insect wings, this study prepared urchin-like gold nanoparticles (UGNPs) and deposited them on poly(ε-caprolactone) (PCL)/chitosan (P/C) electrospun nanofiber film to strengthen antibacterial activities of this active packaging. Results showed that L-Dopa was a suitable reducing agent to prepare UGNPs, and the spine length of UGNPs increased from 21.23 to 35.83 nm as the molar ratio of L-Dopa:HAuCl4 increased from 1 to 3. As the nanofiber film was immersed in the nanoparticle solution for a longer time, the UGNP content in P/C nanofibers increased. As the spine length of UGNPs and depositing UGNP content increased, the inhibition rate against S. aureus and E. coli. of P/C nanofiber film increased. In addition, P/C nanofiber film deposited with UGNPs also exhibited good thermal stability, hydrophilicity, mechanical strength, and water vapor permeability, exhibiting its potential as an antibacterial active packaging.


Assuntos
Antibacterianos , Quitosana , Escherichia coli , Ouro , Nanopartículas Metálicas , Nanofibras , Poliésteres , Staphylococcus aureus , Quitosana/química , Quitosana/farmacologia , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Poliésteres/química , Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas/química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana
5.
Int J Biol Macromol ; 277(Pt 4): 134540, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111465

RESUMO

Algal proteins are an emerging source of functional foods. Herein, Chlorella pyrenoidosa protein (CPP)/xanthan gum-based hydrogels (HG) and beeswax-gelled oleogels (OG) are adopted to fabricate bigels. The phase inversion of bigels can be regulated by the ratio of OG and HG: As the OG increased, bigels turn from OG-in-HG (OG/HG) to a semicontinuous state and then HG-in-OG (HG/OG). In OG/HG bigels (OG ≤ 50 %), hydrophilic CPP acts as the emulsifier at the interface of OG and HG, while beeswax emulsifies the system in HG/OG bigels (OG = 80 %). A semicontinuous bigel appears during the transition between HG/OG and OG/HG. The increase of OG can enhance the viscoelasticity, hardness, adhesiveness, chewiness, and thermal stability. OG/HG bigels exhibit stronger thixotropic recovery and oil-holding capacity than HG/OG bigels. In the in-vitro digestion and food 3D printing, the high specific surface area and the highest thixotropic recovery caused by the emulsion structure of the OG/HG bigel (OG = 50 %) are conducive to the release of free fatty acids and molding of 3D-printed objects, respectively. This study provides a new approach to structure the gelled water-oil system with CPP and helps to develop edible algal proteins-based multiphase systems in food engineering or pharmacy.


Assuntos
Chlorella , Impressão Tridimensional , Ceras , Ceras/química , Chlorella/química , Hidrogéis/química , Digestão , Compostos Orgânicos/química , Emulsões/química , Proteínas de Algas/química , Proteínas de Algas/metabolismo
6.
Int J Biol Macromol ; 278(Pt 1): 134579, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39122082

RESUMO

The oil fraction will affect the aggregation behavior and structural strength of emulsion gels. In this study, the effect of the camellia oil (CO) fraction on the properties of emulsion gels stabilized by regenerated silk fibroin (RSF) was studied. The results showed that CO was essential for gel formation, with oil droplets incorporated into the RSF matrix as anchors to achieve rapid gelation of RSF. The gel hardness significantly increased from 20.03 to 53.35 g as the fraction of CO increased from 5 % to 25 %. The oxidation stability of the emulsion gels was also improved, and the peroxide value (POV) decreased from 2419.3 to 839.9 µmol/kg. As the oil fraction rose from 5 % to 25 %, the percentage of released free fatty acids decreased from 73.24 % to 59.49 % due to forming a more compact gel structure. In addition, the rheological results revealed that all emulsion gels had a shear-thinning behavior and good temperature stability in the range of 5 to 90 °C. This study provided a theoretical basis for preparing RSF-based emulsion gels, helps in the recycling of silk protein resources, and promotes the development of emulsion gel applications in the food industry.


Assuntos
Emulsões , Fibroínas , Géis , Reologia , Fibroínas/química , Emulsões/química , Géis/química , Temperatura , Óleos/química , Oxirredução
7.
Food Chem ; 463(Pt 2): 141349, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39305672

RESUMO

Formulated oil-in-water (O/W) emulsions of oleic acid (OA) using sesame protein isolate (SPI) were processed via emulsion electrospinning with poly (vinyl) alcohol (PVA) to fabricate core-shell nanofibers for lipid oxidation prevention. The emulsion droplet size and viscosity increased as the oil volume fraction rose from 5 % to 30 %. The morphology tests and Fourier transform infrared spectroscopy (FTIR) confirmed the uniformity of nanofibers and OA encapsulation with hydrogen bonding. The thermal stability, mechanical properties, and water contact angle (WCA) of the nanofiber films improved with increased OA content. Encapsulation efficiency was 94.76 % and storage stability was maintained for 7 days in 5 % oil fraction nanofibers. The nanofibers showed lower oxidation and superior oxidative resistance to free OA, with the lowest peroxide value (POV, 2.14 mmol/L) and thiobarbituric acid-reactive substances (TBARS, 36.75 µmol/L). In conclusion, the OA/SPI/PVA (PE) core-shell nanofibers via emulsion electrospinning are efficient for fatty acid encapsulation in functional foods.

8.
Food Chem ; 455: 139959, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850980

RESUMO

The Glycerol monolaurate (GML) oleogel was induced using Camellia oil by slowly raising the temp to the melting point (MP) of GML. Whey protein isolate (WPI) solution with different ratios was composited with GML oleogel by emulsion template methods, forming dense spines and honeycomb-like networks and impressed with an adjustable composite structure. Textural results showed that compared with single GML-based oleogels, the GML/WPI composite oleogels had the advantages of high hardness and molding, and structural stability. The composite oleogels had moderate thermal stability and maximal oil binding (96.36%). In particular, as up to 6 wt% GML/WPI, its modulus apparent viscosity was significantly increased in rheology and similar to commercial fats. Moreover, it achieved the highest release of FFA (64.07%) and the synergy provided a lipase substrate and reduced the body's burden. The resulting composite oleogel also showed intermolecular hydrogen bonding and van der Waals force interactions. These findings further enlarge the application in the plant and animal-based combined of fat substitutes, delivery of bioactive molecules, etc., with the desired physical and functional properties according to different proportions.


Assuntos
Digestão , Lauratos , Monoglicerídeos , Compostos Orgânicos , Proteínas do Soro do Leite , Proteínas do Soro do Leite/química , Lauratos/química , Monoglicerídeos/química , Compostos Orgânicos/química , Viscosidade , Reologia , Modelos Biológicos , Camellia/química , Animais , Lipase/química , Lipase/metabolismo , Substitutos da Gordura/química
9.
Carbohydr Polym ; 322: 121328, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37839840

RESUMO

Polysaccharide-based oleogels and emulsion gels have become novel strategies to replace solid fats due to safe and plentiful raw material, healthier fatty acid composition, controllable viscoelasticity, and more varied nutrition/flavor embedding. Recently, various oleogelation techniques and novel emulsion gels have been reported further to enrich the potential of polysaccharides in oil structuring, in which a crucial step is to promote the formation of polysaccharide networks determining gel properties through different media. Meanwhile, polysaccharide-based oleogels and emulsion gels have good oil holding, nutrient/flavor embedding, and 3D food printability, and their applications as fat substitutes have been explored in foods. This paper comprehensively reviews the types, preparation methods, and mechanisms of various polysaccharide-based oleogels and emulsion gels; meanwhile, the food applications and new trends of polysaccharide-based gels are discussed. Moreover, some viewpoints about potential developments and application challenges of polysaccharide-based gels are mentioned. In the future, polysaccharide-based gels may be flexible materials for customized nutritional foods and molecular gastronomy. However, it is still a challenge to select the appropriate oleogels or emulsion gels to meet the requirements of the products. Once this issue is addressed, oleogels and emulsion gels are anticipated to be used widely.


Assuntos
Ácidos Graxos , Polissacarídeos , Emulsões , Géis
10.
Chem Commun (Camb) ; 59(52): 8063-8066, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37261726

RESUMO

Facile gelation and degelation have been achieved by dynamic hydrogen bonding among dimethyl sulfoxide, water, and polyethylene glycol to prepare anti-freezing, drying-resistant, strongly thixotropic, and water-sensitive organohydrogels that are significant for biomaterial protection and storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA