Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1312380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726002

RESUMO

Objective: The choice of neoadjuvant therapy for esophageal squamous cell carcinoma (ESCC) is controversial. This study aims to provide a basis for clinical treatment selection by establishing a predictive model for the efficacy of neoadjuvant immunochemotherapy (NICT). Methods: A retrospective analysis of 30 patients was conducted, divided into Response and Non-response groups based on whether they achieved major pathological remission (MPR). Differences in genes and immune microenvironment between the two groups were analyzed through next-generation sequencing (NGS) and multiplex immunofluorescence (mIF). Variables most closely related to therapeutic efficacy were selected through LASSO regression and ROC curves to establish a predictive model. An additional 48 patients were prospectively collected as a validation set to verify the model's effectiveness. Results: NGS suggested seven differential genes (ATM, ATR, BIVM-ERCC5, MAP3K1, PRG, RBM10, and TSHR) between the two groups (P < 0.05). mIF indicated significant differences in the quantity and location of CD3+, PD-L1+, CD3+PD-L1+, CD4+PD-1+, CD4+LAG-3+, CD8+LAG-3+, LAG-3+ between the two groups before treatment (P < 0.05). Dynamic mIF analysis also indicated that CD3+, CD8+, and CD20+ all increased after treatment in both groups, with a more significant increase in CD8+ and CD20+ in the Response group (P < 0.05), and a more significant decrease in PD-L1+ (P < 0.05). The three variables most closely related to therapeutic efficacy were selected through LASSO regression and ROC curves: Tumor area PD-L1+ (AUC= 0.881), CD3+PD-L1+ (AUC= 0.833), and CD3+ (AUC= 0.826), and a predictive model was established. The model showed high performance in both the training set (AUC= 0.938) and the validation set (AUC= 0.832). Compared to the traditional CPS scoring criteria, the model showed significant improvements in accuracy (83.3% vs 70.8%), sensitivity (0.625 vs 0.312), and specificity (0.937 vs 0.906). Conclusion: NICT treatment may exert anti-tumor effects by enriching immune cells and activating exhausted T cells. Tumor area CD3+, PD-L1+, and CD3+PD-L1+ are closely related to therapeutic efficacy. The model containing these three variables can accurately predict treatment outcomes, providing a reliable basis for the selection of neoadjuvant treatment plans.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Terapia Neoadjuvante , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Carcinoma de Células Escamosas do Esôfago/terapia , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Terapia Neoadjuvante/métodos , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Prognóstico , Idoso , Biomarcadores Tumorais , Resultado do Tratamento , Imunoterapia/métodos
2.
Aging (Albany NY) ; 15(24): 14733-14748, 2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38159250

RESUMO

BACKGROUND: Anoikis is a speed-limited procedure to inhibit tumor metastasis during epithelial-mesenchymal transition (EMT). Previous studies have explored anoikis-related genes (ARG) in predicting prognosis and distinguishing tumoral immunity in many types of cancer. However, the role of ARGs in regulating NK cell exhaustion (NKE) and in predicting chemotherapy sensitivity is not clear. Therefore, it is necessary to work on it. METHODS: Gene expression profiles and clinical features are collected from TCGA and GEO, and data analysis is performed in R4.2.0. RESULTS: The ARGs-based no-supervised learning algorithm identifies three ARG subgroups, amongst which the prognosis is different. WCGNA and Artificial intelligence (AI) are applied to construct an NKE-related drug sensitivity stratification and prognosis identification model in digestive system cancer. Pathways association analysis screens out GLI2 is a key gene in regulating NKE by non-classic Hedgehog signaling (GLI2/TGF-ß/IL6). In vitro experiments show that down-regulation of GLI2 enhances the CAPE-mediated cell toxicity and accompanies with down-regulation of PD-L1, tumor-derive IL6, and snial1 whereas the expression of cleaved caspas3, cleaved caspase4, cleaved PARP, and E-cadherin are up-regulated in colorectal cancer. Co-culture experiments show that GLI2- decreased colorectal tumor cells lead to down-regulation of TIM-3 and PD1 in NK cells, which are restored by TGF-bate active protein powder. Besides, the Elisa assay shows that GLI2-decreased colorectal tumor cells lead to up-regulation of IFN-gamma in NK cells.


Assuntos
Anoikis , Neoplasias Colorretais , Proteínas Hedgehog , Proteína Gli2 com Dedos de Zinco , Humanos , Anoikis/genética , Inteligência Artificial , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Interleucina-6 , Proteínas Nucleares/genética , Fator de Crescimento Transformador beta , Proteína Gli2 com Dedos de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA