Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902018

RESUMO

Sulfur-containing amino acids methionine (Met), cysteine (Cys) and taurine (Tau) are common dietary constituents with important cellular roles. Met restriction is already known to exert in vivo anticancer activity. However, since Met is a precursor of Cys and Cys produces Tau, the role of Cys and Tau in the anticancer activity of Met-restricted diets is poorly understood. In this work, we screened the in vivo anticancer activity of several Met-deficient artificial diets supplemented with Cys, Tau or both. Diet B1 (6% casein, 2.5% leucine, 0.2% Cys and 1% lipids) and diet B2B (6% casein, 5% glutamine, 2.5% leucine, 0.2% Tau and 1% lipids) showed the highest activity and were selected for further studies. Both diets induced marked anticancer activity in two animal models of metastatic colon cancer, which were established by injecting CT26.WT murine colon cancer cells in the tail vein or peritoneum of immunocompetent BALB/cAnNRj mice. Diets B1 and B2B also increased survival of mice with disseminated ovarian cancer (intraperitoneal ID8 Tp53-/- cells in C57BL/6JRj mice) and renal cell carcinoma (intraperitoneal Renca cells in BALB/cAnNRj mice). The high activity of diet B1 in mice with metastatic colon cancer may be useful in colon cancer therapy.


Assuntos
Aminoácidos Sulfúricos , Carcinoma de Células Renais , Neoplasias do Colo , Neoplasias Renais , Neoplasias Ovarianas , Camundongos , Animais , Feminino , Humanos , Aminoácidos Sulfúricos/metabolismo , Caseínas , Leucina , Camundongos Endogâmicos C57BL , Metionina/metabolismo , Cisteína/metabolismo , Dieta , Taurina/metabolismo , Racemetionina , Lipídeos
2.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555771

RESUMO

Targeted therapies with antiangiogenic drugs (e.g., sunitinib) and immune checkpoint inhibitors (e.g., anti-PD-1 antibodies) are the standard of care for patients with metastatic renal cell carcinoma. Although these treatments improve patient survival, they are rarely curative. We previously hypothesized that advanced cancers might be treated without drugs by using artificial diets in which the levels of specific amino acids (AAs) are manipulated. In this work, after showing that AA manipulation induces selective anticancer activity in renal cell carcinoma cells in vitro, we screened 18 artificial diets for anticancer activity in a challenging animal model of renal cell carcinoma. The model was established by injecting murine renal cell carcinoma (Renca) cells into the peritoneum of immunocompetent BALB/cAnNRj mice. Mice survival was markedly improved when their normal diet was replaced with our artificial diets. Mice fed a diet lacking six AAs (diet T2) lived longer than mice treated with sunitinib or anti-PD-1 immunotherapy; several animals lived very long or were cured. Controlling the levels of several AAs (e.g., cysteine, methionine, and leucine) and lipids was important for the anticancer activity of the diets. Additional studies are needed to further evaluate the therapeutic potential and mechanism of action of this simple and inexpensive anticancer strategy.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Aminoácidos , Neoplasias Renais/patologia , Dieta
3.
Clin Oral Investig ; 22(8): 2943-2946, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30151707

RESUMO

OBJECTIVES: To provide mechanistic evidence for the epidemiological link between long-term use of alcohol-containing mouthwashes and oral cancer. MATERIAL AND METHODS: Human epithelial keratinocytes were exposed for 30 s to concentrations of ethanol commonly present in mouthwashes. After a recovery period, cell viability was assessed with the MTT assay. RESULTS: A marked cytotoxic effect was observed for ethanol concentrations of 20% and above. CONCLUSIONS: The cytotoxicity of ethanol may explain the epidemiological association between mouthwash use and oral cancer. Evidence suggests that the risk of developing cancer in a tissue is strongly determined by the number of stem cell divisions accumulated by the tissue during a person's lifetime; cell division is a major source of mutations and other cancer-promoting errors. Since cell death activates the division of stem cells, the possible cytotoxicity of ethanol on the cells lining the oral mucosa will promote the division of the stem cells located in deeper layers to produce new cells to regenerate the damaged epithelium. If we regularly use mouthwashes containing cytotoxic concentrations of ethanol, the stem cells of the oral cavity may need to divide more often than usual and our risk of developing oral cancer may increase. CLINICAL RELEVANCE: Many mouthwashes contain percentages of ethanol above 20%. Because ethanol is not crucial to prevent and reduce gingivitis and plaque, members of the dental team should consider the potential risk of oral cancer associated with frequent use of alcohol-containing mouthwashes when advising their patients.


Assuntos
Etanol/toxicidade , Queratinócitos/efeitos dos fármacos , Neoplasias Bucais/induzido quimicamente , Antissépticos Bucais/química , Antissépticos Bucais/toxicidade , Linhagem Celular , Humanos , Técnicas In Vitro
4.
Drug Dev Res ; 79(8): 426-436, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30375672

RESUMO

Preclinical Research & Development Several clinically useful anticancer drugs selectively kill cancer cells by inducing DNA damage; the genomic instability and DNA repair defects of cancer cells make them more vulnerable than normal cells to the cytotoxicity of DNA-damaging agents. Because epoxide-containing compounds can induce DNA damage, we have used the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to evaluate the selective cytotoxicity of three epoxyalkyl galactopyranosides against A549 lung cancer cells and MRC-5 lung normal cells. Compound (2S,3S)-2,3-epoxydecyl 4,6-O-(S)-benzylidene-ß-d-galactopyranoside (EDBGP) showed the highest selective anticancer activity and was selected for mechanistic studies. After observing that EDBGP induced cellular DNA damage (comet assay), we found that cells deficient in nucleotide excision repair were hypersensitive to the cytotoxicity of this compound; this suggests that EDBGP may induce bulky DNA adducts. EDBGP did not inhibit glycolysis (glucose consumption and lactate production). Pretreatment of lung cancer cells with several antioxidants did not reduce the cytotoxicity of EDBGP, thereby indicating that reactive oxygen species do not participate in the anticancer activity of this compound. Finally, EDBGP was screened against a panel of cancer cells and normal cells from several tissues, including three genetically modified skin fibroblasts with increasing degree of malignancy. Our results suggest that epoxyalkyl galactopyranosides are promising lead compounds for the development of new anticancer agents.


Assuntos
Citotoxinas/química , Dano ao DNA/efeitos dos fármacos , Galactose/química , Galactose/toxicidade , Células A549 , Animais , Células CHO , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cricetulus , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Feminino , Células HCT116 , Células HL-60 , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Masculino
6.
Nutrients ; 15(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37447206

RESUMO

Cancer cells cannot proliferate and survive unless they obtain sufficient levels of the 20 proteinogenic amino acids (AAs). Unlike normal cells, cancer cells have genetic and metabolic alterations that may limit their capacity to obtain adequate levels of the 20 AAs in challenging metabolic environments. However, since normal diets provide all AAs at relatively constant levels and ratios, these potentially lethal genetic and metabolic defects are eventually harmless to cancer cells. If we temporarily replace the normal diet of cancer patients with artificial diets in which the levels of specific AAs are manipulated, cancer cells may be unable to proliferate and survive. This article reviews in vivo studies that have evaluated the antitumor activity of diets restricted in or supplemented with the 20 proteinogenic AAs, individually and in combination. It also reviews our recent studies that show that manipulating the levels of several AAs simultaneously can lead to marked survival improvements in mice with metastatic cancers.


Assuntos
Aminoácidos , Neoplasias , Camundongos , Animais , Aminoácidos/metabolismo , Dieta , Neoplasias/tratamento farmacológico
7.
Cancers (Basel) ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36900331

RESUMO

Patients with metastatic triple negative breast cancer (TNBC) need new therapies to improve the low survival rates achieved with standard treatments. In this work, we show for the first time that the survival of mice with metastatic TNBC can be markedly increased by replacing their normal diet with artificial diets in which the levels of amino acids (AAs) and lipids are strongly manipulated. After observing selective anticancer activity in vitro, we prepared five artificial diets and evaluated their anticancer activity in a challenging model of metastatic TNBC. The model was established by injecting 4T1 murine TNBC cells into the tail vein of immunocompetent BALB/cAnNRj mice. First-line drugs doxorubicin and capecitabine were also tested in this model. AA manipulation led to modest improvements in mice survival when the levels of lipids were normal. Reducing lipid levels to 1% markedly improved the activity of several diets with different AA content. Some mice fed the artificial diets as monotherapy lived much longer than mice treated with doxorubicin and capecitabine. An artificial diet without 10 non-essential AAs, with reduced levels of essential AAs, and with 1% lipids improved the survival not only of mice with TNBC but also of mice with other types of metastatic cancers.

8.
Nutrients ; 14(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36014884

RESUMO

New therapies are needed to improve the low survival rates of patients with metastatic colon cancer. Evidence suggests that amino acid (AA) restriction can be used to target the altered metabolism of cancer cells. In this work, we evaluated the therapeutic potential of selective AA restriction in colon cancer. After observing anticancer activity in vitro, we prepared several artificial diets and evaluated their anticancer activity in two challenging animal models of metastatic colon cancer. These models were established by injecting CT26.WT murine colon cancer cells in the peritoneum (peritoneal dissemination) or in the tail vein (pulmonary metastases) of immunocompetent BALB/cAnNRj mice. Capecitabine, which is a first-line treatment for patients with metastatic colon cancer, was also evaluated in these models. Mice fed diet TC1 (a diet lacking 10 AAs) and diet TC5 (a diet with 6% casein, 5% glutamine, and 2.5% leucine) lived longer than untreated mice in both models; several mice survived the treatment. Diet TC5 was better than several cycles of capecitabine in both cancer models. Cysteine supplementation blocked the activity of diets TC1 and TC5, but cysteine restriction was not sufficient for activity. Our results indicated that artificial diets based on selective AA restriction have therapeutic potential for colon cancer.


Assuntos
Neoplasias do Colo , Neoplasias Retais , Aminoácidos/metabolismo , Animais , Capecitabina/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Cisteína/uso terapêutico , Dieta , Camundongos
9.
Plants (Basel) ; 10(10)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34686002

RESUMO

Finding cytotoxic drugs with a high selectivity towards cancer cells is crucial to improve the low survival rates of patients diagnosed with metastatic cancers. Since plants are an important source of anticancer drugs, we have screened 65 extracts from 45 plants collected in several areas of Western Andalusia (Spain) for cytotoxic activity on lung cancer cells versus lung normal cells. An extract from the leaves of Tetraclinis articulata (Vahl) Mast. (Cupressaceae) showed a marked cytotoxicity (IC50 = 0.37 ± 0.03 µg/mL) and selectivity (selectivity index = 378.3) against the lung cancer cells; cisplatin, 5-fluorouracil, and an extract from the leaves of Taxus baccata L. (Taxaceae) were less cytotoxic and selective. Extracts from Cascabela thevetia (L.) Lippold (Apocynaceae), Frangula alnus Mill. (Rhamnaceae), Iberis ciliata subsp. contracta (Pers.) Moreno (Brassicaceae), Juniperus macrocarpa Sm (Cupressaceae), and Pancratium maritimum L. (Amaryllidaceae) also showed selective cytotoxicity (selectivity index > 10). Active extracts were also tested against a panel of cancer cell lines from a variety tissues. The plants identified in this work are potential sources of natural compounds with selective toxicity towards cancer cells.

10.
Biomedicines ; 10(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35052721

RESUMO

We recently screened a series of new aziridines ß-D-galactopyranoside derivatives for selective anticancer activity and identified 2-methyl-2,3-[N-(4-methylbenzenesulfonyl)imino]propyl 2,3-di-O-benzyl-4,6-O-(S)-benzylidene-ß-D-galactopyranoside (AzGalp) as the most promising compound. In this article, we explore the possible mechanisms involved in the cytotoxicity of this aziridine and evaluate its selective anticancer activity using cancer cells and normal cells from a variety of tissues. Our data show that AzGalp induces DNA damage (comet assay). Cells deficient in the nucleotide excision repair (NER) pathway were hypersensitive to the cytotoxicity of this compound. These results suggest that AzGalp induces bulky DNA adducts, and that cancer cells lacking a functional NER pathway may be particularly vulnerable to the anticancer effects of this aziridine. Several experiments revealed that neither the generation of oxidative stress nor the inhibition of glycolysis played a significant role in the cytotoxicity of AzGalp. Combinations of AzGalp with oxaliplatin or 5-fluorouracil slightly improved the ability of both anticancer drugs to selectively kill cancer cells. AzGalp also showed selective cytotoxicity against a panel of malignant cells versus normal cells; the highest selectivity was observed for two acute promyelocytic leukemia cell lines. Additional preclinical studies are necessary to evaluate the anticancer potential of AzGalp.

11.
Nat Prod Res ; 33(23): 3454-3458, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29842791

RESUMO

Since plants are an important source of anticancer drugs, we have carried out a random screening for selective anticancer activity of 57 extracts from 45 plants collected in Grazalema Natural Park, an area in the South of Spain of high plant diversity and endemism. Using lung cancer cells (A549) and lung non-malignant cells (MRC-5), we found that several extracts were more cytotoxic and selective against the cancer cells than the standard anticancer agent cisplatin. Five active extracts were further tested in cancer and normal cell lines from other tissues, including three skin cell lines with increasing degree of malignancy. An extract from the leaves of Daphne laureola L. (Thymelaeaceae) showed a striking potency and selectivity on lung cancer cells and leukemia cells; the IC50 values against these cancer cells were approximately 10,000-fold lower than against the normal cells. Daphnane-type diterpene orthoesters may be responsible for this highly selective anticancer activity.


Assuntos
Antineoplásicos/isolamento & purificação , Daphne/química , Neoplasias Pulmonares/tratamento farmacológico , Extratos Vegetais/farmacologia , Células A549 , Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Humanos , Leucemia/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Espanha , Thymelaeaceae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA