Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 58(14): 9253-9259, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31247830

RESUMO

A new homochiral BINAPDA-Zr-MOF was prepared by a new chiral organic linker of (R)-4,4'-(6,6'-dichloro-2,2'-diethoxyl-[1,1'-binaphthalene]-4,4'-diyl)dibenzoic acid (R-L) and ZrCl4 under solvothermal conditions. Its structure was determined by Pawley refinement on the basis of the measured PXRD pattern determined for BINAPDA-Zr-MOF, and it showed that the obtained chiral MOF crystallized in the F23 space group with the same topological structure as that of UiO-66. The obtained BINAPDA-Zr-MOF can be a very active catalyst to catalyze aldehyde cyanosilylation. In addition, the chiral BINAPDA-Zr-MOF was a typical solid catalyst, which was proved by a hot leaching test; moreover, it could be reused at least five times without loss of its catalytic activity and enantioselectivity.

2.
Inorg Chem ; 56(1): 654-660, 2017 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-27977178

RESUMO

A new Mn(II) metal-organic framework (MOF) 1 was synthesized by the combination of 4,4,4-trifluoro-1-(4-(pyridin-4-yl)phenyl)butane-1,3-dione (L) and Mn(OAc)2 in solution. 1 features a threefold-interpenetrating NbO net containing honeycomb-like channels, in which the opposite Mn(II)···Mn(II) distance is 23.5075(10) Å. Furthermore, 1 can be an ideal platform to support Pd-Au bimetallic alloy nanoparticles to generate a composite catalytic system of Pd-Au@Mn(II)-MOF (2). 2 can be a highly active bifunctional heterogeneous catalyst for the one-pot tandem synthesis of imines from benzyl alcohols and anilines and from benzyl alcohols and benzylamines.

3.
Inorg Chem ; 55(6): 3058-64, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26959340

RESUMO

A new 3D porous Cu(II)-MOF (1) was synthesized based on a ditopic pyridyl substituted diketonate ligand and Cu(OAc)2 in solution, and it features a 3D NbO motif which is determined by the X-ray crystallography. Furthermore, the Pd NPs-loaded hybrid material Pd@Cu(II)-MOF (2) was prepared based on 1 via solution impregnation, and its structure was confirmed by HRTEM, SEM, XRPD, gas adsorption-desorption, and ICP measurement. 2 exhibits excellent catalytic activity (conversion, 93% to >99%) and selectivity (>99% to benzaldehydes) for various benzyl alcohol substrates (benzyl alcohol and its derivatives with electron-withdrawing and electron-donating groups) oxidation reactions in air. In addition, 2 is a typical heterogeneous catalyst, which was confirmed by hot solution leaching experiment, and it can be recycled at least six times without significant loss of its catalytic activity and selectivity.

4.
Inorg Chem ; 55(13): 6685-91, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27322613

RESUMO

A new composite Au@Cu(II)-MOF catalyst has been synthesized via solution impregnation and full characterized by HRTEM, SEM-EDS, XRD, gas adsorption-desorption, XPS, and ICP analysis. It has been shown here that the Cu(II)-framework can be a useful platform to stabilize and support gold nanoparticles (Au NPs). The obtained Au@Cu(II)-MOF exhibits a bifunctional catalytic behavior and is able to promote selective aerobic benzyl alcohol oxidation-Knoevenagel condensation in a stepwise way.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA