Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(29): e2401420121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38995966

RESUMO

Cerebral (Aß) plaque and (pTau) tangle deposition are hallmarks of Alzheimer's disease (AD), yet are insufficient to confer complete AD-like neurodegeneration experimentally. Factors acting upstream of Aß/pTau in AD remain unknown, but their identification could enable earlier diagnosis and more effective treatments. T cell abnormalities are emerging AD hallmarks, and CD8 T cells were recently found to mediate neurodegeneration downstream of tangle deposition in hereditary neurodegeneration models. The precise impact of T cells downstream of Aß/pTau, however, appears to vary depending on the animal model. Our prior work suggested that antigen-specific memory CD8 T ("hiT") cells act upstream of Aß/pTau after brain injury. Here, we examine whether hiT cells influence sporadic AD-like pathophysiology upstream of Aß/pTau. Examining neuropathology, gene expression, and behavior in our hiT mouse model we show that CD8 T cells induce plaque and tangle-like deposition, modulate AD-related genes, and ultimately result in progressive neurodegeneration with both gross and fine features of sporadic human AD. T cells required Perforin to initiate this pathophysiology, and IFNγ for most gene expression changes and progression to more widespread neurodegenerative disease. Analogous antigen-specific memory CD8 T cells were significantly elevated in the brains of human AD patients, and their loss from blood corresponded to sporadic AD and related cognitive decline better than plasma pTau-217, a promising AD biomarker candidate. We identify an age-related factor acting upstream of Aß/pTau to initiate AD-like pathophysiology, the mechanisms promoting its pathogenicity, and its relevance to human sporadic AD.


Assuntos
Doença de Alzheimer , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Camundongos , Humanos , Placa Amiloide/patologia , Placa Amiloide/imunologia , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Encéfalo/patologia , Encéfalo/imunologia , Masculino , Interferon gama/metabolismo , Interferon gama/imunologia , Envelhecimento/imunologia , Memória Imunológica , Células T de Memória/imunologia , Perforina/metabolismo , Perforina/genética , Feminino
2.
Anal Chem ; 96(15): 5951-5959, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38563595

RESUMO

Sphingolipids are an essential subset of bioactive lipids found in most eukaryotic cells that contribute to membrane biophysical properties and are involved in cellular differentiation, recognition, and mediating interactions. The described nanoHPLC-ESI-Q/ToF methodology utilizes known biosynthetic pathways, accurate mass detection, optimized collision-induced disassociation, and a robust nanoflow chromatographic separation for the analysis of intact sphingolipids found in human tissue, cells, and serum. The methodology was developed and validated with an emphasis on addressing the common issues experienced in profiling these amphipathic lipids, which are part of the glycocalyx and lipidome. The high sensitivity obtained using nanorange flow rates with robust chromatographic reproducibility over a wide range of concentrations and injection volumes results in confident identifications for profiling these low-abundant biomolecules.


Assuntos
Glicoesfingolipídeos , Espectrometria de Massa com Cromatografia Líquida , Humanos , Reprodutibilidade dos Testes , Cromatografia Líquida/métodos , Esfingolipídeos , Cromatografia Líquida de Alta Pressão/métodos
3.
FASEB J ; 37(11): e23261, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37878335

RESUMO

Fatty acids are metabolized by ß-oxidation within the "mitochondrial ketogenic pathway" (MKP) to generate ß-hydroxybutyrate (BHB), a ketone body. BHB can be generated by most cells but largely by hepatocytes following exercise, fasting, or ketogenic diet consumption. BHB has been shown to modulate systemic and brain inflammation; however, its direct effects on microglia have been little studied. We investigated the impact of BHB on Aß oligomer (AßO)-stimulated human iPS-derived microglia (hiMG), a model relevant to the pathogenesis of Alzheimer's disease (AD). HiMG responded to AßO with proinflammatory activation, which was mitigated by BHB at physiological concentrations of 0.1-2 mM. AßO stimulated glycolytic transcripts, suppressed genes in the ß-oxidation pathway, and induced over-expression of AD-relevant p46Shc, an endogenous inhibitor of thiolase, actions that are expected to suppress MKP. AßO also triggered mitochondrial Ca2+ increase, mitochondrial reactive oxygen species production, and activation of the mitochondrial permeability transition pore. BHB potently ameliorated all the above mitochondrial changes and rectified the MKP, resulting in reduced inflammasome activation and recovery of the phagocytotic function impaired by AßO. These results indicate that microglia MKP can be induced to modulate microglia immunometabolism, and that BHB can remedy "keto-deficiency" resulting from MKP suppression and shift microglia away from proinflammatory mitochondrial metabolism. These effects of BHB may contribute to the beneficial effects of ketogenic diet intervention in aged mice and in human subjects with mild AD.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Animais , Camundongos , Ácido 3-Hidroxibutírico/farmacologia , Peptídeos beta-Amiloides , Corpos Cetônicos , Inflamação
4.
Brain ; 146(5): 2089-2106, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36355566

RESUMO

TAR DNA-binding protein-43 (TDP-43) proteinopathies are accompanied by the pathological hallmark of cytoplasmic inclusions in the neurodegenerative diseases, including frontal temporal lobar degeneration-TDP and amyotrophic lateral sclerosis. We found that transthyretin accumulates with TDP-43 cytoplasmic inclusions in frontal temporal lobar degeneration-TDP human patients and transgenic mice, in which transthyretin exhibits dramatic expression decline in elderly mice. The upregulation of transthyretin expression was demonstrated to facilitate the clearance of cytoplasmic TDP-43 inclusions through autophagy, in which transthyretin induces autophagy upregulation via ATF4. Of interest, transthyretin upregulated ATF4 expression and promoted ATF4 nuclear import, presenting physical interaction. Neuronal expression of transthyretin in frontal temporal lobar degeneration-TDP mice restored autophagy function and facilitated early soluble TDP-43 aggregates for autophagosome targeting, ameliorating neuropathology and behavioural deficits. Thus, transthyretin conducted two-way regulations by either inducing autophagy activation or escorting TDP-43 aggregates targeted autophagosomes, suggesting that transthyretin is a potential modulator therapy for neurological disorders caused by TDP-43 proteinopathy.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Proteinopatias TDP-43 , Humanos , Camundongos , Animais , Demência Frontotemporal/complicações , Degeneração Lobar Frontotemporal/patologia , Pré-Albumina , Proteinopatias TDP-43/patologia , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Autofagia , Fator 4 Ativador da Transcrição
5.
Mol Cell Proteomics ; 21(11): 100427, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36252735

RESUMO

The proteins in the cell membrane of the brain are modified by glycans in highly interactive regions. The glycans and glycoproteins are involved in cell-cell interactions that are of fundamental importance to the brain. In this study, the comprehensive N-glycome and N-glycoproteome of the brain were determined in 11 functional brain regions, some of them known to be affected with the progression of Alzheimer's disease. N-glycans throughout the regions were generally highly branched and highly sialofucosylated. Regional variations were also found with regard to the glycan types including high mannose and complex-type structures. Glycoproteomic analysis identified the proteins that differed in glycosylation in the various regions. To obtain the broader representation of glycan compositions, four subjects with two in their 70s and two in their 90s representing two Alzheimer's disease subjects, one hippocampal sclerosis subject, and one subject with no cognitive impairment were analyzed. The four subjects were all glycomically mapped across 11 brain regions. Marked differences in the glycomic and glycoproteomic profiles were observed between the samples.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/metabolismo , Glicosilação , Proteoma/metabolismo , Polissacarídeos/metabolismo , Encéfalo/metabolismo
6.
Glia ; 71(5): 1346-1359, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36692036

RESUMO

Fucosylation, especially core fucosylation of N-glycans catalyzed by α1-6 fucosyltransferase (fucosyltransferase 8 or FUT8), plays an important role in regulating the peripheral immune system and inflammation. However, its role in microglial activation is poorly understood. Here we used human induced pluripotent stem cells-derived microglia (hiMG) as a model to study the role of FUT8-catalyzed core fucosylation in amyloid-ß oligomer (AßO)-induced microglial activation, in view of its significant relevance to the pathogenesis of Alzheimer's disease (AD). HiMG responded to AßO and lipopolysaccharides (LPS) with a pattern of pro-inflammatory activation as well as enhanced core fucosylation and FUT8 expression within 24 h. Furthermore, we found increased FUT8 expression in both human AD brains and microglia isolated from 5xFAD mice, a model of AD-like cerebral amyloidosis. Inhibition of fucosylation in AßO-stimulated hiMG reduced the induction of pro-inflammatory cytokines, suppressed the activation of p38MAPK, and rectified phagocytic deficits. Specific inhibition of FUT8 by siRNA-mediated knockdown also reduced AßO-induced pro-inflammatory cytokines. We further showed that p53 binds to the two consensus binding sites in the Fut8 promoter, and that p53 knockdown abolished FUT8 overexpression in AßO-activated hiMG. Taken together, our evidence supports that FUT8-catalyzed core fucosylation is a signaling pathway required for AßO-induced microglia activation and that FUT8 is a component of the p53 signaling cascade regulating microglial behavior. Because microglia are a key driver of AD pathogenesis, our results suggest that microglial FUT8 could be an anti-inflammatory therapeutic target for AD.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Fucosiltransferases/metabolismo , Microglia/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Proteína Supressora de Tumor p53 , Células-Tronco Pluripotentes Induzidas/metabolismo , Citocinas/metabolismo , Catálise
7.
Stroke ; 54(5): 1227-1235, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37021572

RESUMO

BACKGROUND: Understanding the neurobiological underpinnings between established multimodal dementia risk factors and noninvasive blood-based biomarkers may lead to greater precision and earlier identification of older adults at risk of accelerated decline and dementia. We examined whether key vascular and genetic risk impact the association between cerebral amyloid burden and plasma aß (amyloid ß) 42/40 in nondemented older adults. METHODS: We used nondemented older adults from the UCD-ADRC (University of California, Davis-Alzheimer's Disease Research Center) study (n=96) and Alzheimer's Disease Neuroimaging Initiative (n=104). Alzheimer's Disease Neuroimaging Initiative was examined as confirmatory study cohort. We followed a cross-sectional design and examined linear regression followed by mediation analyses. Vascular risk score was obtained as the sum of hypertension, diabetes, hyperlipidemia, coronary artery disease, and cerebrovascular disease. Apolipoprotein E (APOE) ε4+ risk was genotyped, and plasma aß42 and aß40 were assayed. Cerebral amyloid burden was quantified using Florbetapir-PET scans. Baseline age was included as a covariate in all models. RESULTS: Vascular risk significantly predicted cerebral amyloid burden in Alzheimer's Disease Neuroimaging Initiative but not in the UCD-ADRC cohort. Cerebral amyloid burden was associated with plasma aß 42/40 in both cohorts. Higher vascular risk increased cerebral amyloid burden was indirectly associated with reduced plasma aß 42/40 in Alzheimer's Disease Neuroimaging Initiative but not in UCD-ADRC cohort. However, when stratified by APOE ε4+ risk, we consistently observed this indirect relationship only in APOE ε4+ carriers across both cohorts. CONCLUSIONS: Vascular risk is indirectly associated with the level of plasma aß 42/40 via cerebral amyloid burden only in APOE ε4+ carriers. Nondemented older adults with genetic vulnerability to dementia and accelerated decline may benefit from careful monitoring of vascular risk factors directly associated with cerebral amyloid burden and indirectly with plasma aß 42/40.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Idoso , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Estudos Transversais , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons , Amiloide
8.
Int J Mol Sci ; 24(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373543

RESUMO

Research has found that genes specific to microglia are among the strongest risk factors for Alzheimer's disease (AD) and that microglia are critically involved in the etiology of AD. Thus, microglia are an important therapeutic target for novel approaches to the treatment of AD. High-throughput in vitro models to screen molecules for their effectiveness in reversing the pathogenic, pro-inflammatory microglia phenotype are needed. In this study, we used a multi-stimulant approach to test the usefulness of the human microglia cell 3 (HMC3) cell line, immortalized from a human fetal brain-derived primary microglia culture, in duplicating critical aspects of the dysfunctional microglia phenotype. HMC3 microglia were treated with cholesterol (Chol), amyloid beta oligomers (AßO), lipopolysaccharide (LPS), and fructose individually and in combination. HMC3 microglia demonstrated changes in morphology consistent with activation when treated with the combination of Chol + AßO + fructose + LPS. Multiple treatments increased the cellular content of Chol and cholesteryl esters (CE), but only the combination treatment of Chol + AßO + fructose + LPS increased mitochondrial Chol content. Microglia treated with combinations containing Chol + AßO had lower apolipoprotein E (ApoE) secretion, with the combination of Chol + AßO + fructose + LPS having the strongest effect. Combination treatment with Chol + AßO + fructose + LPS also induced APOE and TNF-α expression, reduced ATP production, increased reactive oxygen species (ROS) concentration, and reduced phagocytosis events. These findings suggest that HMC3 microglia treated with the combination of Chol + AßO + fructose + LPS may be a useful high-throughput screening model amenable to testing on 96-well plates to test potential therapeutics to improve microglial function in the context of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/farmacologia , Apolipoproteínas E/metabolismo , Linhagem Celular , Colesterol/farmacologia , Frutose/farmacologia , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Angew Chem Int Ed Engl ; : e202205748, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35536889

RESUMO

A powerful approach to cooperative group-transfer catalysis is demonstrated using the Co=Si bond of a cobalt silylene to provide two distinct sites for substrate activation. The orthogonal selectivity of the Co and Si centers enables efficient nitrene-group transfer to carbon monoxide by avoiding poisoning that would result from substrates competing for a single reactive site.

10.
J Infect Dis ; 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32365189

RESUMO

BACKGROUND: Porcine circovirus type 1 (PCV-1) material was detected in the human rotavirus vaccine (HRV) in 2010. In this study (NCT02914184) we compared immunogenicity and safety of the PCV-free HRV vaccine (PCV-free HRV) with HRV. PCV-free HRV is an HRV with no detection of PCV-1 and PCV-2 according to the limit of detection of the tests used. METHODS: Healthy infants 6-12 weeks of age were randomized (1:1:1:1) to receive 2 doses of 1 of the 3 lots of PCV-free HRV or HRV. The study objectives were to demonstrate lot-to-lot consistency of the PCV-free HRV and non-inferiority of PCV-free HRV as compared to HRV in terms of immunogenicity, 1-2 months post-dose 2. Reactogenicity and safety were also assessed. RESULTS: Overall, 1612 infants were enrolled and 1545 completed the study. Study objectives were demonstrated since the pre-defined criteria were met. Among participants receiving PCV-free HRV and HRV, 79.27% and 81.76% seroconverted and geometric mean concentrations were 159.5 and 152.8 U/mL, respectively. The incidences of adverse events and serious adverse events were similar between the pooled PCV-free HRV and HRV groups. CONCLUSIONS: The 3 PCV-free HRV lots demonstrated consistency and PCV-free HRV was non-inferior compared to HRV in terms of immunogenicity.

11.
Glia ; 68(11): 2377-2394, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32525239

RESUMO

Microglia-mediated inflammation exerts adverse effects in ischemic stroke and in neurodegenerative disorders such as Alzheimer's disease (AD). Expression of the voltage-gated potassium channel Kv1.3 is required for microglia activation. Both genetic deletion and pharmacological inhibition of Kv1.3 are effective in reducing microglia activation and the associated inflammatory responses, as well as in improving neurological outcomes in animal models of AD and ischemic stroke. Here we sought to elucidate the molecular mechanisms underlying the therapeutic effects of Kv1.3 inhibition, which remain incompletely understood. Using a combination of whole-cell voltage-clamp electrophysiology and quantitative PCR (qPCR), we first characterized a stimulus-dependent differential expression pattern for Kv1.3 and P2X4, a major ATP-gated cationic channel, both in vitro and in vivo. We then demonstrated by whole-cell current-clamp experiments that Kv1.3 channels contribute not only to setting the resting membrane potential but also play an important role in counteracting excessive membrane potential changes evoked by depolarizing current injections. Similarly, the presence of Kv1.3 channels renders microglia more resistant to depolarization produced by ATP-mediated P2X4 receptor activation. Inhibiting Kv1.3 channels with ShK-223 completely nullified the ability of Kv1.3 to normalize membrane potential changes, resulting in excessive depolarization and reduced calcium transients through P2X4 receptors. Our report thus links Kv1.3 function to P2X4 receptor-mediated signaling as one of the underlying mechanisms by which Kv1.3 blockade reduces microglia-mediated inflammation. While we could confirm previously reported differences between males and females in microglial P2X4 expression, microglial Kv1.3 expression exhibited no gender differences in vitro or in vivo. MAIN POINTS: The voltage-gated K+ channel Kv1.3 regulates microglial membrane potential. Inhibition of Kv1.3 depolarizes microglia and reduces calcium entry mediated by P2X4 receptors by dissipating the electrochemical driving force for calcium.


Assuntos
Potenciais da Membrana , Trifosfato de Adenosina , Doença de Alzheimer , Animais , Cálcio , Feminino , Inflamação , Microglia , Receptores Purinérgicos P2 , Receptores Purinérgicos P2X4
12.
Glycobiology ; 30(11): 859-871, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32337579

RESUMO

Saccharides in our diet are major sources of carbon for the formation of biomass such as proteins, lipids, nucleic acids and glycans. Among the dietary monosaccharides, glucose occupies a central role in metabolism, but human blood contains regulated levels of other monosaccharides as well. Their influence on metabolism and how they are utilized have not been explored thoroughly. Applying metabolic flux analysis on glycan synthesis can reveal the pathways that supply glycosylation precursors and provide a snapshot of the metabolic state of the cell. In this study, we traced the incorporation of six 13C uniformly labeled monosaccharides in the N-glycans, O-glycans and glycosphingolipids of both pluripotent and neural NTERA-2 cells. We gathered detailed isotopologue data for hundreds of glycoconjugates using mass spectrometry methods. The contributions of de novo synthesis and direct incorporation pathways for glucose, mannose, fructose, galactose, N-acetylglucosamine and fucose were determined based on their isotope incorporation. Co-feeding studies revealed that fructose incorporation is drastically decreased by the presence of glucose, while mannose and galactose were much less affected. Furthermore, increased sialylation slowed down the turnover of glycans, but fucosylation attenuated this effect. Our results demonstrated that exogenous monosaccharide utilization can vary markedly depending on the cell differentiation state and monosaccharide availability, and that the incorporation of carbons can also differ among different glycan structures. We contend that the analysis of metabolic isotope labeling of glycans can yield new insights about cell metabolism.


Assuntos
Glicocálix/metabolismo , Monossacarídeos/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Pluripotentes/metabolismo , Humanos
13.
Acta Neuropathol ; 139(6): 1071-1088, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32303840

RESUMO

Brain tumors are the most common solid tumors of childhood, and the genetic drivers and optimal therapeutic strategies for many of the different subtypes remain unknown. Here, we identify that bithalamic gliomas harbor frequent mutations in the EGFR oncogene, only rare histone H3 mutation (in contrast to their unilateral counterparts), and a distinct genome-wide DNA methylation profile compared to all other glioma subtypes studied to date. These EGFR mutations are either small in-frame insertions within exon 20 (intracellular tyrosine kinase domain) or missense mutations within exon 7 (extracellular ligand-binding domain) that occur in the absence of accompanying gene amplification. We find these EGFR mutations are oncogenic in primary astrocyte models and confer sensitivity to specific tyrosine kinase inhibitors dependent on location within the kinase domain or extracellular domain. We initiated treatment with targeted kinase inhibitors in four children whose tumors harbor EGFR mutations with encouraging results. This study identifies a promising genomically-tailored therapeutic strategy for bithalamic gliomas, a lethal and genetically distinct brain tumor of childhood.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Glioma/genética , Mutação/genética , Adolescente , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Criança , Pré-Escolar , Epigênese Genética/genética , Receptores ErbB/genética , Feminino , Glioma/tratamento farmacológico , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Inibidores de Proteínas Quinases/farmacologia
14.
J Clin Periodontol ; 47(11): 1354-1361, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32841379

RESUMO

AIM: This cross-sectional study aimed to examine the diagnostic ability of salivary matrix metalloproteinase (MMP)-9 lateral flow test (LFT) point-of-care (POC) kit and develop an algorithm for diagnosis of periodontitis. MATERIALS AND METHODS: Through Seoul National Dental Hospital, 137 participants (46 LFT negatives, 91 LFT positives) were recruited. For salivary diagnostics, 150 µl of the unstimulated saliva was applied to LFT-POC kit. To make a diagnosis of periodontitis, stage II-IV in modified new international classification system was used. Covariates encompassing age, sex, smoking and obesity were evaluated through face-to-face interview. Enzyme-linked immunosorbent assay was used for quantification of salivary MMP-9. To develop a diagnostic algorithm, multivariable logistic regression analysis was used. Receiver operating characteristic curve was applied for evaluating diagnostic ability. RESULTS: Diagnostic ability of salivary MMP-9 LFT-POC test was 0.82 (sensitivity of 0.92, specificity of 0.72) in total participants. Diagnostic algorithm using POC test resulted in a response equation, that is algorithm score = -3.675 + 2.877*LFT + 0.034*age + 0.121*sex + 0.372*smoking + 0.192*obesity. Diagnostic ability of the algorithm was 0.88 (sensitivity of 0.92, specificity of 0.85) with cut-off score of 0.589. CONCLUSIONS: Salivary MMP-9 LFT-POC kit showed appropriate diagnostic ability for periodontitis and would be an efficient tool for screening of periodontitis.


Assuntos
Metaloproteinase 9 da Matriz , Periodontite , Biomarcadores , Estudos Transversais , Humanos , Lactente , Metaloproteinase 8 da Matriz , Periodontite/diagnóstico , Testes Imediatos , Saliva
15.
J Genet Couns ; 29(1): 78-87, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31701594

RESUMO

Genomic sequencing (GS), such as whole genome and exome sequencing, is rapidly being integrated into pediatric critical care settings. Results are being used to make high impact decisions including declarations of futility, withdrawal of care, and rationing of scarce resources. In this qualitative study, we conducted interviews with clinicians involved in the care of critically ill children with congenital heart disease (CHD) to investigate their views on implementation of GS into clinical practice. Interviews were transcribed and inductively analyzed for major themes using grounded theory and thematic analysis. Three major themes emerged surrounding the use of genomic information in the high-stakes, time pressured decision making that characterizes clinical care of critically ill children with CHD: (a) that clinicians felt they did not have sufficient training to accurately assess genetic results despite pressure to incorporate results into clinical decisions; (b), that they desire knowledge support from genetic specialists, such as genetic counselors, who both understand the critical care context and are available within the time constraints of critical care clinical pressures; and (c), that clinicians feel a pressing need for increased genetics education to be able to safely and appropriately incorporate GS results into clinical decisions Our data suggest that genetics specialists may need a stronger presence in the pediatric critical care setting.


Assuntos
Conselheiros , Cuidados Críticos , Aconselhamento Genético , Testes Genéticos , Pediatria , Criança , Feminino , Teoria Fundamentada , Humanos , Masculino , Pesquisa Qualitativa , Sequenciamento do Exoma
16.
Proc Natl Acad Sci U S A ; 114(15): E3129-E3138, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28351972

RESUMO

Proteolytic processing of amyloid precursor protein (APP) C-terminal fragments (CTFs) by γ-secretase underlies the pathogenesis of Alzheimer's disease (AD). An RNA interference screen using APP-CTF [99-residue CTF (C99)]- and Notch-specific γ-secretase interaction assays identified a unique ErbB2-centered signaling network that was predicted to preferentially govern the proteostasis of APP-C99. Consistently, significantly elevated levels of ErbB2 were confirmed in the hippocampus of human AD brains. We then found that ErbB2 effectively suppressed autophagic flux by physically dissociating Beclin-1 from the Vps34-Vps15 complex independent of its kinase activity. Down-regulation of ErbB2 by CL-387,785 decreased the levels of C99 and secreted amyloid-ß in cellular, zebrafish, and mouse models of AD, through the activation of autophagy. Oral administration of an ErbB2-targeted CL-387,785 for 3 wk significantly improves the cognitive functions of APP/presenilin-1 (PS1) transgenic mice. This work unveils a noncanonical function of ErbB2 in modulating autophagy and establishes ErbB2 as a therapeutic target for AD.


Assuntos
Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Autofagia , Encéfalo/patologia , Presenilina-1/metabolismo , Receptor ErbB-2/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Encéfalo/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Presenilina-1/genética , Proteostase , Receptor ErbB-2/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
17.
Malays J Med Sci ; 27(5): 202-204, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33154712

RESUMO

The public was reported to be anxious and concerned during the pandemic. It is unknown whether these reactions had a relationship with the statistics of coronavirus disease 2019 (COVID-19) in Malaysia. We used Google Trends (GT) to understand whether the publics' inquisitiveness towards COVID-19 and its recommended precautionary measures had increased during the initial duration of the pandemic in Malaysia.

18.
FASEB J ; 32(5): 2866-2877, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401580

RESUMO

The goal of this study was to identify the intrinsic links that explain the effect of a Western diet (WD) on cognitive dysfunction. Specific pathogen-free, wild-type mice were fed either a control diet (CD) or a high-fat, high-sucrose WD after weaning and were euthanized at 10 mo of age to study the pathways that affect cognitive health. The results showed that long-term WD intake reduced hippocampal synaptic plasticity and the level of brain-derived neurotrophic factor mRNA in the brain and isolated microglia. A WD also activated ERK1/2 and reduced postsynaptic density-95 in the brain, suggesting postsynaptic damage. Moreover, WD-fed mice had increased inflammatory signaling in the brain, ileum, liver, adipose tissue, and spleen, which was accompanied by microglia activation. In the brain, as well as in the digestive tract, a WD reduced signaling regulated by retinoic acid and bile acids (BAs), whose receptors form heterodimers to control metabolism and inflammation. Furthermore, a WD intake caused dysbiosis and dysregulated BA synthesis with reduced endogenous ligands for BA receptors, i.e., farnesoid X receptor and G-protein-coupled bile acid receptor in the liver and brain. Together, dysregulated BA synthesis and dysbiosis were accompanied by systemic inflammation, microglial activation, and reduced neuroplasticity induced by WD.-Jena, P. K., Sheng, L., Di Lucente, J., Jin, L.-W., Maezawa, I., Wan, Y.-J. Y. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity.


Assuntos
Ácidos e Sais Biliares/biossíntese , Dieta Ocidental/efeitos adversos , Disbiose/metabolismo , Hipocampo/metabolismo , Microglia/metabolismo , Plasticidade Neuronal , Animais , Disbiose/induzido quimicamente , Disbiose/patologia , Hipocampo/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Microglia/patologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Tretinoína/metabolismo
19.
Brain ; 141(2): 596-612, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29272333

RESUMO

Microglia significantly contribute to the pathophysiology of Alzheimer's disease but an effective microglia-targeted therapeutic approach is not yet available clinically. The potassium channels Kv1.3 and Kir2.1 play important roles in regulating immune cell functions and have been implicated by in vitro studies in the 'M1-like pro-inflammatory' or 'M2-like anti-inflammatory' state of microglia, respectively. We here found that amyloid-ß oligomer-induced expression of Kv1.3 and Kir2.1 in cultured primary microglia. Likewise, ex vivo microglia acutely isolated from the Alzheimer's model 5xFAD mice co-expressed Kv1.3 and Kir2.1 as well as markers traditionally associated with M1 and M2 activation suggesting that amyloid-ß oligomer induces a microglial activation state that is more complex than previously thought. Using the orally available, brain penetrant small molecule Kv1.3 blocker PAP-1 as a tool, we showed that pro-inflammatory and neurotoxic microglial responses induced by amyloid-ß oligomer required Kv1.3 activity in vitro and in hippocampal slices. Since we further observed that Kv1.3 was highly expressed in microglia of transgenic Alzheimer's mouse models and human Alzheimer's disease brains, we hypothesized that pharmacological Kv1.3 inhibition could mitigate the pathology induced by amyloid-ß aggregates. Indeed, treating APP/PS1 transgenic mice with a 5-month oral regimen of PAP-1, starting at 9 months of age, when the animals already manifest cognitive deficits and amyloid pathology, reduced neuroinflammation, decreased cerebral amyloid load, enhanced hippocampal neuronal plasticity, and improved behavioural deficits. The observed decrease in cerebral amyloid deposition was consistent with the in vitro finding that PAP-1 enhanced amyloid-ß uptake by microglia. Collectively, these results provide proof-of-concept data to advance Kv1.3 blockers to Alzheimer's disease clinical trials.


Assuntos
Doença de Alzheimer , Canal de Potássio Kv1.3/metabolismo , Microglia/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Recém-Nascidos , Aprendizagem da Esquiva/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Ficusina/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Canal de Potássio Kv1.3/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Mutação/genética , Fragmentos de Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Presenilina-1/genética , Canais de Potássio Shab/metabolismo
20.
Alzheimers Dement ; 15(2): 205-216, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30347188

RESUMO

INTRODUCTION: We sought to establish the relationships between standard postmortem measures of AD neuropathology and antemortem [11C]PIB-positron emission tomography ([11C]PIB-PET) analyzed with the Centiloid (CL) method, a standardized scale for Aß-PET quantification. METHODS: Four centers contributed 179 participants encompassing a broad range of clinical diagnoses, PET data, and autopsy findings. RESULTS: CL values increased with each CERAD neuritic plaque score increment (median -3 CL for no plaques and 92 CL for frequent plaques) and nonlinearly with Thal Aß phases (increases were detected starting at phase 2) with overlap between scores/phases. PET-pathology associations were comparable across sites and unchanged when restricting the analyses to the 56 patients who died within 2 years of PET. A threshold of 12.2 CL detected CERAD moderate-to-frequent neuritic plaques (area under the curve = 0.910, sensitivity = 89.2%, specificity = 86.4%), whereas 24.4 CL identified intermediate-to-high AD neuropathological changes (area under the curve = 0.894, sensitivity = 84.1%, specificity = 87.9%). DISCUSSION: Our study demonstrated the robustness of a multisite Centiloid [11C]PIB-PET study and established a range of pathology-based CL thresholds.


Assuntos
Doença de Alzheimer , Compostos de Anilina , Autopsia , Neuropatologia , Placa Amiloide , Tomografia por Emissão de Pósitrons , Tiazóis , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Feminino , Humanos , Masculino , Placa Amiloide/diagnóstico por imagem , Placa Amiloide/patologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA