Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hepatol ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38599383

RESUMO

BACKGROUND & AIMS: Endoplasmic reticulum (ER) membrane protein complex subunit 10 (EMC10) has been implicated in obesity. Here we investigated the roles of the two isoforms of EMC10, including a secreted isoform (scEMC10) and an ER membrane-bound isoform (mEMC10), in metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS: Manifold steatotic mouse models and HepG2 cells were employed to investigate the role of EMC10 in the regulation of hepatic PERK-eIF2α-ATF4 signaling and hepatosteatosis. The therapeutic effect of scEMC10-neutralizing antibody on mouse hepatosteatosis was explored. Associations of MASLD with serum scEMC10 and hepatic mEMC10 were determined in two cohorts of participants with MASLD. RESULTS: scEMC10 promoted, while mEMC10 suppressed, the activation of hepatic PERK-eIF2α-ATF4 signaling. Emc10 gene knockout exacerbated, while hepatic overexpression of mEMC10 ameliorated, hepatic ER stress and steatosis in mice challenged with either a methionine- and choline-deficient diet or tunicamycin, highlighting a direct, suppressive role of mEMC10 in MASLD via modulation of hepatic ER stress. Overexpression of scEMC10 promoted, whereas neutralization of circulating scEMC10 prevented, hepatosteatosis in mice with fatty liver, suggesting a role of scEMC10 in MASLD development. Clinically, serum scEMC10 was increased, while hepatic mEMC10 was decreased, in participants with MASLD. Correlative analysis indicated that serum scEMC10 positively, whereas hepatic mEMC10 negatively, correlated with liver fat content and serum ALT, AST, and GGT. CONCLUSIONS: These findings demonstrate a novel isoform-specific role for EMC10 in the pathogenesis of MASLD and identify the secreted isoform as a tractable therapeutic target for MASLD via antibody-based neutralization. IMPACT AND IMPLICATIONS: We have shown the role of EMC10 in the regulation of energy homeostasis and obesity. In this study, we determine the distinct roles of the two isoforms of EMC10 in the regulation of hepatic endoplasmic reticulum stress and steatosis in mice, and report on the associations of the different EMC10 isoforms with metabolic dysfunction-associated steatotic liver disease in humans. Our findings delineate a novel regulatory axis for hepatosteatosis and identify EMC10 as a modulator of the PERK-eIF2α-ATF4 signaling cascade that may be of broad physiological significance. Moreover, our pre-clinical and clinical studies provide evidence of the therapeutic potential of targeting scEMC10 in MASLD.

2.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077468

RESUMO

Endoplasmic reticulum membrane protein complex subunit 10 (EMC10) is an evolutionarily conserved and multifunctional factor across species. We previously reported that Emc10 knockout (KO) leads to mouse male infertility. Emc10-null spermatozoa exhibit multiple aspects of dysfunction, including reduced sperm motility. Two subunits of a Na/K-ATPase, ATP1A4 and ATP1B3, are nearly absent in Emc10 KO spermatozoa. Here, two isoforms of EMC10 were characterized in the mouse testis and epididymis: the membrane-bound (mEMC10) and secreted (scEMC10) isoforms. We present evidence that mEMC10, rather than scEMC10, is required for cytoplasm sodium homeostasis by positively regulating ATP1B3 expression in germ cells. Intra-testis mEMC10 overexpression rescued the sperm motility defect caused by Emc10 KO, while exogenous recombinant scEMC10 protein could not improve the motility of spermatozoa from either Emc10 KO mouse or asthenospermic subjects. Clinically, there is a positive association between ATP1B3 and EMC10 protein levels in human spermatozoa, whereas no correlation was proven between seminal plasma scEMC10 levels and sperm motility. These results highlight the important role of the membrane-bound EMC10 isoform in maintaining cytoplasm sodium homeostasis and sperm motility. Based on the present results, the mEMC10-Na, K/ATPase α4ß3 axis is proposed as a novel mechanism underlying the regulation of cytoplasmic sodium and sperm motility, and its components seem to have therapeutic potential for asthenospermia.


Assuntos
Astenozoospermia , Motilidade dos Espermatozoides , Animais , Astenozoospermia/metabolismo , Citoplasma/metabolismo , Homeostase , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Isoformas de Proteínas/metabolismo , Sêmen/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo
3.
Acta Diabetol ; 60(2): 305-313, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36459200

RESUMO

AIMS: Spexin plays a role in regulating glucose metabolism. This study investigated the spexin levels in different glycemic status and its association with insulin secretion in humans. METHODS: A total of 462 subjects were recruited in this study, including 52 healthy subjects, 106 first-degree relatives (FDRs) of type 2 diabetes mellitus (T2DM), 115 impaired glucose regulation (IGR), 80 newly diagnosed T2DM, and 106 established T2DM. Serum spexin was measured using ELISA. The homeostasis model assessment of insulin resistance (HOMA2-IR) and ß-cell function (HOMA2-ß), and Stumvoll index estimating first- and second-phase insulin secretion were calculated. RESULTS: Spexin levels were higher in FDRs [235.53 pg/ml (185.28, 293.95)] and IGR [239.79 pg/ml (191.52, 301.69)], comparable in newly diagnosed T2DM [224.68 pg/ml (187.37, 279.74)], and lower in established T2DM [100.11 pg/ml (78.50, 137.34)], compared with healthy subjects [200.23 pg/ml (160.32, 275.65)]. Spexin levels were negatively correlated with fasting plasma glucose (FPG) (r = - 0.355, P < 0.001), hemoglobin A1C (HbA1c) (r = - 0.379, P < 0.001), and HOMA2-IR (r = - 0.225, P < 0.001), and positively correlated with HOMA2-ß (r = 0.245, P < 0.001) after adjusting for age, sex, and BMI. Multivariate linear regression analysis showed that established T2DM and HOMA2-ß were independently associated with serum spexin levels. CONCLUSIONS: Serum spexin levels represented as a bell-shaped curve along the glycemic continuum and is closely related with insulin secretion in humans.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células Secretoras de Insulina , Humanos , População do Leste Asiático , Resistência à Insulina/fisiologia , Glucose , Células Secretoras de Insulina/metabolismo , Glicemia/metabolismo , Insulina
4.
J Clin Endocrinol Metab ; 108(10): e1074-e1081, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37071730

RESUMO

CONTEXT: We have recently shown that the secreted isoform of endoplasmic reticulum membrane complex subunit 10 (scEMC10) is upregulated in human obesity and that overexpression of scEMC10 promotes, whereas antibody neutralization of circulating scEMC10 prevents diet-induced obesity in mice. OBJECTIVE: To explore associations of serum scEMC10 with body mass index (BMI), resting metabolism rate (RMR), and age in humans. DESIGN: A cross-sectional study. SETTING AND PATIENTS: A total of 833 participants from a Chinese physical examination cohort and 191 participants from the Leipzig Obesity Biobank cohort. MAIN OUTCOME MEASURES: Serum scEMC10 concentrations are measured using chemiluminescent immunoassay. RMR is calculated based on measurements from indirect calorimetry with an open-circuit ventilated-hood system. RESULTS: In the Chinese physical examination cohort, a J-shaped nonlinear correlation between BMI and serum scEMC10 was identified in participants where underweight, overweight, and obese people all presented higher serum scEMC10 levels than normal weight people. Participants younger than age 30 years old exhibited significantly higher serum scEMC10 levels than those older than 50 years of age. In addition, participants aged 30 to 40 years also had significantly higher serum scEMC10 levels than those aged 50 to 60 years. In the Leipzig Obesity Biobank cohort, we observed a significantly negative correlation between serum scEMC10 and resting energy expenditure after adjusting for BMI. Participants in the highest quartile of serum scEMC10 levels had significantly lower RMR than those in the first quartile. RMR had an independently inverse association with serum scEMC10. CONCLUSIONS: Serum scEMC10 levels are negatively associated with age and RMR in humans.


Assuntos
Metabolismo Basal , Composição Corporal , Humanos , Animais , Camundongos , Pessoa de Meia-Idade , Adulto , Estudos Transversais , Obesidade/metabolismo , Sobrepeso/metabolismo , Índice de Massa Corporal , Metabolismo Energético , Calorimetria Indireta
5.
Ann Transl Med ; 10(19): 1052, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36330393

RESUMO

Background: Metabolic syndrome (MetS) refers to a cluster of metabolic disorders that are mainly caused by obesity. Skeletal muscle is a central component of systemic metabolism. However, the mechanism of skeletal muscle metabolic impairment in obesity remains unclear. This study aimed to identify key early biomarkers in skeletal muscle for the prevention and treatment of MetS in obesity. Methods: The GSE85439 dataset was downloaded from the Gene Expression Omnibus database. Gene set enrichment and immune cell infiltration analyses were performed for genome-wide genes. Differentially expressed genes (DEGs) between obese and control mice were screened and subjected to functional enrichment analysis, and a protein-protein interaction network was constructed. The results of the bioinformatics analysis were confirmed by immunofluorescence and real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results: Enrichment analysis indicated that the genes expressed in obese mice were mainly associated with acute inflammatory response. Immune cell infiltration analysis of 190 DEGs with consistent trends showed that the numbers of mast cells (MCs) and active dendritic cells were significantly higher in obese mice than in control mice. Immunofluorescence analysis confirmed that the number of MCs present in the skeletal muscle was higher in obese mice than in control mice, although no difference was observed in the active dendritic cell count. Functional enrichment analysis showed that the DEGs were mainly associated with transcriptional regulation. In the clusters of the protein-protein interaction network, four acute-phase-response genes (SAA1, SAA2, ORM1, and HP) were significantly correlated with transcription-regulating genes (SHH, IGF2, and CELA1); these seven genes were identified as hub genes. The qRT-PCR results showed that the expression levels of SAA1, SAA2, IGF2, and CELA1 were significantly higher in obese mice than in control mice; however, those of HP, ORM1, and SHH did not differ significantly between the two groups. Conclusions: The skeletal muscle of obese mice exhibits elevated MC infiltration and increased SAA1, SAA2, CELA1, and IGF2 expression. The identification of these biomarkers has increased our understanding of the potential functional mechanisms of skeletal muscle in obesity. These potential biomarkers may serve as targets for the prevention and treatment of MetS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA