Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 16208, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176632

RESUMO

Precise control of domain wall displacement in nanowires is essential for application in domain wall based memory and logic devices. Currently, domain walls are pinned by creating topographical notches fabricated by lithography. In this paper, we propose localized diffusion of non-magnetic metal into ferromagnetic nanowires by annealing induced mixing as a non-topographical approach to form pinning sites. As a first step to prove this new approach, magnetodynamic properties of permalloy (Ni80Fe20) films coated with different capping layers such as Ta, Cr, Cu and Ru were investigated. Ferromagnetic resonance (FMR), and anisotropy magnetoresistance (AMR) measurements were carried out after annealing the samples at different temperatures (T an ). The saturation magnetization of Ni80Fe20 film decreased, and damping constant increased with T an . X-Ray photoelectron spectroscopy results confirmed increased diffusion of Cr into the middle of Ni80Fe20 layers with T an . The resistance vs magnetic field measurements on nanowires showed intriguing results.

2.
Bioinspir Biomim ; 6(4): 046003, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21992989

RESUMO

Biomimetics is one of the most important paradigms as researchers seek to invent better engineering designs over human history. However, the observation of insect flight is a relatively recent work. Several researchers have tried to address the aerodynamic performance of flapping creatures and other natural properties of insects, although there are still many unsolved questions. In this study, we try to answer the questions related to the mechanical properties of a beetle's hind wing, which consists of a stiff vein structure and a flexible membrane. The membrane of a beetle's hind wing is small and flexible to the point that conventional methods cannot adequately quantify the material properties. The digital image correlation method, a non-contact displacement measurement method, is used along with a specially designed mini-tensile testing system. To reduce the end effects, we developed an experimental method that can deal with specimens with as high an aspect ratio as possible. Young's modulus varies over the area in the wing and ranges from 2.97 to 4.5 GPa in the chordwise direction and from 1.63 to 2.24 GPa in the spanwise direction. Furthermore, Poisson's ratio in the chordwise direction is 0.63-0.73 and approximately twice as large as that in the spanwise direction (0.33-0.39). From these results, we can conclude that the membrane of a beetle's hind wing is an anisotropic and non-homogeneous material. Our results will provide a better understanding of the flapping mechanism through the formulation of a fluid-structure interaction analysis or aero-elasticity analysis and meritorious data for biomaterial properties database as well as a creative design concept for a micro aerial flapper that mimics an insect.


Assuntos
Aeronaves , Materiais Biomiméticos , Besouros/fisiologia , Voo Animal/fisiologia , Modelos Biológicos , Asas de Animais/fisiologia , Animais , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Membranas/anatomia & histologia , Membranas/fisiologia , Miniaturização , Asas de Animais/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA