RESUMO
The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.
RESUMO
The nature of the active sites and their structure sensitivity are the keys to rational design of efficient catalysts but have been debated for almost one century in heterogeneous catalysis. Though the Brønsted-Evans-Polanyi (BEP) relationship along with linear scaling relation has long been used to study the reactivity, explicit geometry, and composition properties are absent in this relationship, a fact that prevents its exploration in structure sensitivity of supported catalysts. In this work, based on interpretable multitask symbolic regression and a comprehensive first-principles data set, we discovered a structure descriptor, the topological under-coordinated number mediated by number of valence electrons and the lattice constant, to successfully address the structure sensitivity of metal catalysts. The database used for training, testing, and transferability investigation includes bond-breaking barriers of 20 distinct chemical bonds over 10 transition metals, two metal crystallographic phases, and 17 different facets. The resulting 2D descriptor composing the structure term and the reaction energy term shows great accuracy to predict the reaction barriers and generalizability over the data set with diverse chemical bonds in symmetry, bond order, and steric hindrance. The theory is physical and concise, providing a constructive strategy not only to understand the structure sensitivity but also to decipher the entangled geometric and electronic effects of metal catalysts. The insights revealed are valuable for the rational design of the site-specific metal catalysts.
RESUMO
The family Sisoridae is one of the largest and most diverse Asiatic catfish families, with most species occurring in the water systems of the Qinhai-Tibetan Plateau and East Himalayas. At present, the phylogenetic relationship of the Sisoridae is relatively chaotic. In this study, the mitochondrial genomes (mitogenomes) of three species Creteuchiloglanis kamengensis, Glaridoglanis andersonii, and Exostoma sp. were systematically investigated, the phylogenetic relationships of the family were reconstructed and to determine the phylogenetic position of Exostoma sp. within Sisoridae. The lengths of the mitogenomes' sequences of C. kamengensis, G. andersonii, and Exostoma sp. were 16,589 bp, 16,531 bp, and 16,529 bp, respectively. They all contained one identical control region (D-loop), two ribosomal RNAs (rRNAs), 13 protein-coding genes (PCGs) and 22 transfer RNA (tRNA) genes. We applied two approaches, Bayesian Inference (BI) and Maximum Likelihood (ML), to construct phylogenetic trees. Our findings revealed that the topological structure of both ML and BI trees exhibited significant congruence. Specifically, the phylogenetic tree strongly supports the monophyly of Sisorinae and Glyptosternoids and provides new molecular biological data to support the reconstruction of phylogenetic relationships with Sisoridae. This study is of great scientific value for phylogenetic and genetic variation studies of the Sisoridae.
RESUMO
Precise regulation of the active site structure is an important means to enhance the activity and selectivity of catalysts in CO2 electroreduction. Here, we creatively introduce anionic groups, which can not only stabilize metal sites with strong coordination ability but also have rich interactions with protons at active sites to modify the electronic structure and proton transfer process of catalysts. This strategy helps to convert CO2 into fuel chemicals at low overpotentials. As a typical example, a composite catalyst, CuO/Cu-NSO4/CN, with highly dispersed Cu(II)-SO4 sites has been reported, in which CO2 electroreduction to formate occurs at a low overpotential with a high Faradaic efficiency (-0.5â V vs. RHE, FEformate=87.4 %). Pure HCOOH is produced with an energy conversion efficiency of 44.3 % at a cell voltage of 2.8â V. Theoretical modeling demonstrates that sulfate promotes CO2 transformation into a carboxyl intermediate followed by HCOOH generation, whose mechanism is significantly different from that of the traditional process via a formate intermediate for HCOOH production.
RESUMO
Understanding the genetic structure and the factors associated with adaptive diversity has significant implications for the effective management of wild populations under threat from overfishing and climate change. The common hairfin anchovy (Setipinna tenuifilis) is an economically and ecologically important pelagic fish species, spanning a broad latitudinal gradient along marginal seas of the Northwest Pacific. In this study, we constructed the first reference genome of S. tenuifilis using PacBio long reads and high-resolution chromosome conformation capture (Hi-C) technology. The assembled genome was 798.38 Mb with a contig N50 of 1.43 Mb and a scaffold N50 of 32.42 Mb, which were anchored onto 24 pseudochromosomes. A total of 22,019 genes were functionally annotated, which accounted for 95.27% of the predicted protein-coding genes. Chromosomal collinearity analysis revealed chromosome fusion or fission events in Clupeiformes species. Three genetic groups of S. tenuifilis were revealed along the Chinese coast using restriction site-associated DNA sequencing (RADseq). We investigated the influence of four bioclimatic variables as potential drivers of adaptive divergence in S. tenuifilis, suggesting that these environmental variables, especially sea surface temperature, may play important roles as drivers of spatially varying selection for S. tenuifilis. We also identified candidate functional genes underlying adaptive mechanisms and ecological tradeoffs using redundancy analysis (RDA) and BayeScan analysis. In summary, this study sheds light on the evolution and spatial patterns of genetic variation of S. tenuifilis, providing a valuable genomic resource for further biological and genetic studies on this species and other closely related Clupeiformes.
RESUMO
In high-altitude (4500 m) freshwater lakes, Daphnia is the apex species and the dominant zooplankton. It frequently dwells in the same lake as the Gammarid. Branchiopoda, a class of Arthropoda, Crustacea, is a relatively primitive group in the subphylum Crustacea, which originated in the Cambrian period of the Paleozoic. The complete mitogenome sequence of Daphnia sp. (Branchiopoda: Cladocera) was sequenced and annotated in this study and deposited in GenBank. The sequence structure of this species was studied by comparing the original sequences with BLAST. In addition, we have also researched the mechanisms of their mitochondrial gene rearrangement by establishing a model. We have used the Bayesian inference [BI] and maximum likelihood [ML] methods to proceed with phylogenetic analysis inference, which generates identical phylogenetic topology that reveals the phylogenetic state of Daphnia. The complete mitogenome of Daphnia sp. shows that it was 15,254 bp in length and included two control regions (CRs) and 37 genes (13 protein-coding genes, 22 tRNAs and two ribosomal RNAs [16S and 12S]). In addition to tRNA-Ser (GCT), other tRNAs have a typical cloverleaf secondary structure. Meanwhile, the mitogenome of Daphnia sp. was clearly rearranged when compared to the mitogenome of typical Daphnia. In a word, we report a newly sequenced mitogenome of Daphnia sp. with a unique rearrangement phenomenon. These results will be helpful for further phylogenetic research and provide a foundation for future studies on the characteristics of the mitochondrial gene arrangement process in Daphnia.
RESUMO
As an immune checkpoint, programmed cell death 1 (PD-1) and its ligand (PD-L1) pathway plays a crucial role in CD8+ cytotoxic T lymphocytes (CTL) activation and provides antitumor responses. The N-glycans of PD-1 and PD-L1 are highly core fucosylated, which are solely catalyzed by the core fucosyltransferase (Fut8). However, the precise biological mechanisms underlying effects of core fucosylation of PD-1 and PD-L1 on CTL activation have not been fully understood. In this study, we found that core fucosylation was significantly upregulated in lung adenocarcinoma. Compared to those of Fut8+/+ OT-I mice, the lung adenocarcinoma formation induced by urethane was markedly reduced in Fut8-/- OT-I mice. De-core fucosylation of PD-1 compromised its expression on Fut8-/- CTL, resulted in enhanced Fut8-/- CTL activation and cytotoxicity, leading to more efficient tumor eradication. Indeed, loss of core fucosylation significantly enhanced the PD-1 ubiquitination and in turn led to the degradation of PD-1 in the proteasome. Our current work indicates that inhibition of core fucosylation is a unique strategy to reduce PD-1 expression for the antilung adenocarcinoma immune therapy in the future.
Assuntos
Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/terapia , Antineoplásicos/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T Citotóxicos/imunologia , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Fucosiltransferases/imunologia , Glicosilação , Células HEK293 , Humanos , Ativação Linfocitária/imunologia , Camundongos , Transdução de Sinais/imunologia , Regulação para Cima/imunologiaRESUMO
Strong metal-support interactions (SMSI) is an important concept in heterogeneous catalysis. Herein, we demonstrate that the Au-TiO2 SMSI of Au/TiO2 catalysts sensitively depends on both Au nanoparticle (NP) sizes and TiO2 facets. Au NPs of ca. 5â nm are more facile undergo Au-TiO2 SMSI than those of ca. 2â nm, while TiO2 {001} and {100} facets are more facile than TiO2 {101} facets. The resulting capsulating TiO2-x overlayers on Au NPs exhibit an average oxidation state between +3 and +4 and a Au-to-TiO2-x charge transfer, which, combined with calculations, determines the Ti:O ratio as ca. 6:11. Both TiO2-x overlayers and TiO2-x -Au interface exhibit easier lattice oxygen activation and higher intrinsic activity in catalyzing low-temperature CO oxidation than the starting Au-TiO2 interface. These results advance fundamental understanding of SMSI and demonstrate engineering of metal NP size and oxide facet as an effective strategy to tune the SMSI for efficient catalysis.
RESUMO
Hyperlipidemia casts great threats to humans around the world. The systemic co-expression and function enrichment analysis for this disease is limited to date. This study was to identify co-expression modules to explore hyperlipidemia-associated functional pathways. Gene expression data of human hyperlipidemia (GSE17170) were downloaded from the Gene Expression Omnibus (GEO) database. We evaluated the top 3,000 genes with the highest average expression, with which the co-expression modules were constructed in weighted correlation network analysis (WGC-NA).Cluster analysis was then applied to visualize the interaction relationships of these modules. By gene ontology (GO) and KEGG functional enrichment analysis, we finally investigated the function enrichment of co-expression genes from important modules in the Database for Annotation, Visualization, and Integrated Discovery (DAVID) database (https:// david.ncifcrf.gov/summary.jsp).15 Thirteen co-expression modules were constructed for 3,000 genes in the 70samples. Interaction relationships of hub genes between pairwise modules showed high confidence. In functional enrichments of the co-expression modules, genes in Modules 3 and 4 were significantly enriched in biological processes and pathways that are associated with ubiquitination-for example, G0:0016567 (protein ubiquitination) and hsa04120 (ubiquitin-mediated proteolysis). We inferred these two modules as key modules associated with hyperlipidemia. Additionally, G0:0098609 (cell-cell adhesion) was enriched in four modules, suggesting an important function in hyperlipidemia. In conclusion, Protein ubiquitination may play important roles in human hyperlipidemia. All the discoveries made in this study enrich understanding of the pathogenesis of hyperlipidemia and might contribute much to the development of diagnosis and outcome evaluation of this disease.
Assuntos
Bases de Dados Factuais , Ontologia Genética , Redes Reguladoras de Genes/genética , Hiperlipidemias/genética , Ubiquitinação/genética , Análise por Conglomerados , HumanosRESUMO
Resolving the structure and composition of supported nanoparticles under reaction conditions remains a challenge in heterogeneous catalysis. Advanced configurational sampling methods at the density functional theory level are used to identify stable structures of a Pd8 cluster on ceria (CeO2) in the absence and presence of O2. A Monte Carlo method in the Gibbs ensemble predicts Pd-oxide particles to be stable on CeO2 during CO oxidation. Computed potential energy diagrams for CO oxidation reaction cycles are used as input for microkinetics simulations. Pd-oxide exhibits a much higher CO oxidation activity than metallic Pd on CeO2. This work presents for the first time a scaling relation for a CeO2-supported metal nanoparticle catalyst in CO oxidation: a higher oxidation degree of the Pd cluster weakens CO binding and facilitates the rate-determining CO oxidation step with a ceria O atom. Our approach provides a new strategy to model supported nanoparticle catalysts.
RESUMO
Glioma stem-like cells (GSCs) contribute to tumor initiation, progression, and therapeutic resistance, but their cellular origin remains largely unknown. Here, using a stem/progenitor cell-fate tracking reporter system in which eGFP is expressed by promoter of OCT4 that is activated in stem/progenitor cells, we demonstrate that eGFP-negative glioma cells (GCs) became eGFP-positive-GCs in both in vitro cultures and in vivo xenografts. These eGFP-positive-GCs exhibited GSC features and primarily localized to the perivascular region in tumor xenografts, similar to the existence of OCT4-expressing GCs in the perivascular region of human glioblastoma specimens. Angiocrine factors, including nitric oxide (NO), converted eGFP-negative-GCs into eGFP-positive-GCs. Mechanistically, NO signaling conferred GSC features to GCs by increasing OCT4 and NOTCH signaling via ID4. NO signaling blockade and a suicide gene induction prevented tumorigenicity with a decrease in eGFP-positive-GCs in the perivascular region. Taken together, our results reveal the molecular mechanism underlying GSCs generation by cancer cell dedifferentiation.
Assuntos
Proteínas Angiogênicas/metabolismo , Desdiferenciação Celular , Glioma/metabolismo , Glioma/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Humanos , Camundongos , Camundongos Nus , Neovascularização PatológicaRESUMO
Ruthenium is a promising low-temperature catalyst for Fischer-Tropsch synthesis (FTS). However, its scarcity and modest specific activity limit its widespread industrialization. We demonstrate here a strategy for tuning the crystal phase of catalysts to expose denser and active sites for a higher mass-specific activity. Density functional theory calculations show that upon CO dissociation there are a number of open facets with modest barrier available on the face-centered cubic (fcc) Ru but only a few step edges with a lower barrier on conventional hexagonal-closest packed (hcp) Ru. Guided by theoretical calculations, water-dispersible fcc Ru catalysts containing abundant open facets were synthesized and showed an unprecedented mass-specific activity in the aqueous-phase FTS, 37.8 molCO·molRu-1·h-1 at 433 K. The mass-specific activity of the fcc Ru catalysts with an average size of 6.8 nm is about three times larger than the previous best hcp catalyst with a smaller size of 1.9 nm and a higher specific surface area. The origin of the higher mass-specific activity of the fcc Ru catalysts is identified experimentally from the 2 orders of magnitude higher density of the active sites, despite its slightly higher apparent barrier. Experimental results are in excellent agreement with prediction of theory. The great influence of the crystal phases on site distribution and their intrinsic activities revealed here provides a rationale design of catalysts for higher mass-specific activity without decrease of the particle size.
RESUMO
Cancer stem cells can generate tumors from only a small number of cells, whereas differentiated cancer cells cannot. The prominent feature of cancer stem cells is its ability to self-renew and differentiate into multiple types of cancer cells. Cancer stem cells have several distinct tumorigenic abilities, including stem cell signal transduction, tumorigenicity, metastasis, and resistance to anticancer drugs, which are regulated by genetic or epigenetic changes. Like normal adult stem cells involved in various developmental processes and tissue homeostasis, cancer stem cells maintain their self-renewal capacity by activating multiple stem cell signaling pathways and inhibiting differentiation signaling pathways during cancer initiation and progression. Recently, many studies have focused on targeting cancer stem cells to eradicate malignancies by regulating stem cell signaling pathways, and products of some of these strategies are in preclinical and clinical trials. In this review, we describe the crucial features of cancer stem cells related to tumor relapse and drug resistance, as well as the new therapeutic strategy to target cancer stem cells named "differentiation therapy."
Assuntos
Diferenciação Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/genética , Células-Tronco Neoplásicas , Autorrenovação Celular , Humanos , Metástase Neoplásica , Neoplasias/patologia , Transdução de SinaisRESUMO
Various carbonaceous species were controllably deposited on Co/Al2O3 catalysts using ethylene as carbon source during the activation process for Fischer-Tropsch synthesis (FTS). Atomic, polymeric and graphitic carbon were distinguished by Raman spectroscopy, thermoanalysis and temperature programmed hydrogenation. Significant changes occurred in both the catalytic activity and selectivity toward hydrocarbon products after ethylene treatment. The activity decreased along with an increase in CH4 selectivity, at the expense of a remarkable decrease of heavy hydrocarbon production, resulting in enhanced selectivity for the gasoline fraction. In situ XPS experiments show the possible electron transfer from cobalt to carbon and the blockage of metallic cobalt sites, which is responsible for the deactivation of the catalyst. DFT calculations reveal that the activation barrier (Ea) of methane formation decreases by 0.61 eV on the carbon-absorbed Co(111) surface, whereas the Ea of the CH + CH coupling reaction changes unnoticeably. Hydrogenation of CHx to methane becomes the preferable route among the elementary reactions on the Co(111) surface, leading to dramatic changes in the product distribution. Detailed coke-induced deactivation mechanisms of Co-based catalysts during FTS are discussed.
RESUMO
OBJECTIVE: To improve the accuracy of prostate cancer (PCa) detection by focusing biopsy on the suspected lesion manifested by MRI with the total number of biopsy cores relatively unchanged. METHODS: A prospective randomized analysis was performed on 262 cases of suspected PCa detected by multi-parametric MRI (mp-MRI), each with a single suspected lesion with 10 µg/L≤ PSA <20 µg/L. All the patients underwent targeted transrectal prostate biopsy guided by fusion imaging of MRI with transrectal ultrasonography (TRUS), using the 6X+6 strategy (6 cores in the suspected region and another 6 in the systematic prostate) for 134 cases and the traditional 12+2X method (12 cores in the systematic prostate and 2 in the suspected region) for the other 128. Comparisons were made between the two methods in the PCa detection rate in the cases of suspected lesion, total PCa detection rate, incidence of post-biopsy complications, and Gleason scores. Analyses were performed on the prostate imaging reporting and data system (PI-RADS) score, location, transverse section, and diameter of the suspected lesion. RESULTS: Both the total PCa detection rate and that in the cases of suspected lesion were significantly higher in the 6X+6 (44.8% and 37.3%) than in the 12+2X group (37.5% and 27.3%) (P<0.05). MRI showed that the suspected lesions were mostly (45%) located in the middle part of the prostate, the mean area of the transverse section was (0.48±0.11) cm2, and the mean diameter of the tumor was (8.51±2.21) mm. The results of biopsy showed that low-grade tumors (Gleason 3+3=6) accounted for 68% in the 6X+6 group and 71% in the 12+2X group. No statistically significant differences were found between the two groups in the incidence rate of post-biopsy complications. CONCLUSIONS: Compared with the traditional 12+2X method, for the suspected lesion manifested by mp-MRI, focusing biopsy on the suspected region with the 6X+6 strategy can achieve a higher PCa detection rate without increasing the incidence of complications.
Assuntos
Biópsia Guiada por Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Próstata/diagnóstico por imagem , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Humanos , Imagem por Ressonância Magnética Intervencionista , Masculino , Gradação de Tumores , Estudos Prospectivos , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangueRESUMO
Defibrillation is the most effective method of treating ventricular fibrillation(VF), this paper introduces wearable automatic external defibrillators based on embedded system which includes EGG measurements, bioelectrical impedance measurement, discharge defibrillation module, which can automatic identify VF signal, biphasic exponential waveform defibrillation discharge. After verified by animal tests, the device can realize EGG acquisition and automatic identification. After identifying the ventricular fibrillation signal, it can automatic defibrillate to abort ventricular fibrillation and to realize the cardiac electrical cardioversion.
Assuntos
Desfibriladores , Monitorização Fisiológica/instrumentação , Animais , Cardioversão Elétrica , Impedância Elétrica , Desenho de Equipamento , Coração , Humanos , Fibrilação Ventricular/terapiaRESUMO
PURPOSE: Mutations in the FLCN gene are responsible for fibrofolliculoma, pulmonary and renal cysts, and renal cell carcinoma in patients with Birt-Hogg-Dubé syndrome. To explore therapeutic approaches to renal cell carcinoma in patients with Birt-Hogg-Dubé syndrome we investigated the anticancer effects of irradiation on folliculin deficient renal cancer cells. MATERIALS AND METHODS: Folliculin deficient (UOK257 and ACHN-5968) and folliculin expressing (UOK257-2 and ACHN-sc) cell lines were used in this study. Clonogenic assays were used to determine the radiosensitivity of folliculin deficient and expressing renal cell carcinoma cells. Apoptosis was detected in these cells by DAPI and TUNEL assays after irradiation. Monodansylcadaverine analysis, GFP-LC3 assay and Western blot were performed to monitor the autophagic process. RESULTS: Folliculin deficient cells were more sensitive to irradiation than their folliculin expressing counterparts. The enhanced effects of irradiation on folliculin deficient cells were mediated by increased autophagy but not by apoptosis. An increased Beclin 1 protein level and an activated mitogen-activated protein kinase pathway were identified as the key regulators of increased autophagy in these folliculin deficient cells. Inhibiting autophagy with 3-methyladenine or beclin 1 siRNA obviously increased radioresistance in folliculin deficient cells. Moreover, irradiation combined with autophagic inducer rapamycin significantly increased autophagy and radiosensitivity in folliculin deficient renal cell carcinoma cells. CONCLUSIONS: Findings suggest that folliculin deficient renal cell carcinoma cells are highly sensitive to irradiation due to increased autophagic cell death, unlike other types of renal cell carcinoma. Irradiation plus autophagy inducers, eg rapamycin, might be a potentially more effective therapeutic approach to folliculin deficient renal cell carcinoma.
Assuntos
Apoptose/genética , Carcinoma de Células Renais/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , Proteínas Proto-Oncogênicas/genética , RNA Neoplásico/genética , Proteínas Supressoras de Tumor/genética , Autofagia , Síndrome de Birt-Hogg-Dubé , Western Blotting , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Humanos , Marcação In Situ das Extremidades Cortadas , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/deficiência , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/deficiênciaRESUMO
The rapid atrial pacing model is one of the most popular atrial fibrillation animal models. In this paper, a novel implementation of wireless implantable stimulating and ECG monitoring system is described based on the requirements of rapid atrial pacing model. Hardware circuits and software structure of the system are introduced. And test outcomes through in-vitro simulation and in-vivo animal models are presented. After verified by animal tests, the system can be used to initiate and monitor chronic atrial fibriation in real time.
Assuntos
Fibrilação Atrial/diagnóstico , Eletrocardiografia/instrumentação , Monitorização Fisiológica/instrumentação , Próteses e Implantes , Animais , Átrios do Coração/fisiopatologia , Modelos Animais , SoftwareRESUMO
To maintain, develop and rationally utilize marine organisms, understanding their genetic structure and habitat adaptation pattern is necessary. Konosirus punctatus, which is a commercial fish species inhabiting the Indo-west Pacific Ocean, has shown an obvious annual global capture and aquaculture production decline due to climate changes and human activities. In the present study, restriction-site associated DNA sequencing (RAD-seq) was used to describe its genome-wide single nucleotide polymorphisms panel (SNPs). Among 146 individuals collected at nine locations scattered in China, Korea and Japan, a set of 632,090 SNPs were identified. Population genetic analysis showed that K. punctatus individuals were divided into two significant genetic clusters. Meanwhile, potential genetic differentiation between northern and southern population of K. punctatus was found. Treemix results indicated that gene flow existed among sampling locations of K. punctatus, especially from southern Japan to others. Moreover, candidate genes associated with habitat adaptations of K. punctatus were identified, which are involved in diverse physiological processes of K. punctatus including growth and development (e.g., KIDINS220, PAN3), substance metabolism (e.g., PGM5) and immune response (e.g., VAV3, CCT7, HSPA12B). Our findings may aid in understanding the possible mechanisms for the population genetic structure and local adaptation of K. punctatus, which is beneficial to establish the management and conservation units of K. punctatus, guiding the rational use of resources, with reference significance for a profound understanding of the adaptative mechanisms of other marine organisms to the environment. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00216-2.
RESUMO
Cervical cancer, significantly affecting women worldwide, often involves treatment with bleomycin, an anticancer agent targeting breast, ovarian, and cervical cancers by generating reactive oxygen species (ROS) to induce cancer cell death. The Peroxiredoxin (PRDX) family, particularly PRDX1 and 2, plays a vital role in maintaining cellular balance by scavenging ROS, thus mitigating the damaging effects of bleomycin-induced mitochondrial and cellular oxidative stress. This process reduces endoplasmic reticulum (ER) stress and prevents cell apoptosis. However, reducing PRDX1 and 2 levels reverses their protective effect, increasing apoptosis. This research highlights the importance of PRDX1 and 2 in cervical cancer treatments with bleomycin, showing their potential to enhance treatment efficacy by managing ROS and ER stress and suggesting a therapeutic strategy for improving outcomes in cervical cancer treatment.