RESUMO
The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.
Assuntos
Cromossomos Artificiais de Levedura , Genoma Fúngico , Saccharomyces cerevisiae , Sequência de Bases , Cromossomos/genética , Saccharomyces cerevisiae/genética , Biologia SintéticaRESUMO
The characterization of cancer genomes has provided insight into somatically altered genes across tumors, transformed our understanding of cancer biology, and enabled tailoring of therapeutic strategies. However, the function of most cancer alleles remains mysterious, and many cancer features transcend their genomes. Consequently, tumor genomic characterization does not influence therapy for most patients. Approaches to understand the function and circuitry of cancer genes provide complementary approaches to elucidate both oncogene and non-oncogene dependencies. Emerging work indicates that the diversity of therapeutic targets engendered by non-oncogene dependencies is much larger than the list of recurrently mutated genes. Here we describe a framework for this expanded list of cancer targets, providing novel opportunities for clinical translation.
Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Genômica , Humanos , Neoplasias/genética , Neoplasias/patologia , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacosRESUMO
DNA synthesis technology has progressed to the point that it is now practical to synthesize entire genomes. Quite a variety of methods have been developed, first to synthesize single genes but ultimately to massively edit or write from scratch entire genomes. Synthetic genomes can essentially be clones of native sequences, but this approach does not teach us much new biology. The ability to endow genomes with novel properties offers special promise for addressing questions not easily approachable with conventional gene-at-a-time methods. These include questions about evolution and about how genomes are fundamentally wired informationally, metabolically, and genetically. The techniques and technologies relating to how to design, build, and deliver big DNA at the genome scale are reviewed here. A fuller understanding of these principles may someday lead to the ability to truly design genomes from scratch.
Assuntos
DNA/genética , Edição de Genes/métodos , Técnicas de Transferência de Genes , Genes Sintéticos , Engenharia Genética/métodos , Genoma , Sistemas CRISPR-Cas , DNA/química , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Oligonucleotídeos/síntese química , Oligonucleotídeos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Poliovirus/genética , Poliovirus/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esferoplastos/genética , Esferoplastos/metabolismoRESUMO
This study identifies mechanisms mediating responses to immune checkpoint inhibitors using mouse models of triple-negative breast cancer. By creating new mammary tumor models, we find that tumor mutation burden and specific immune cells are associated with response. Further, we developed a rich resource of single-cell RNA-seq and bulk mRNA-seq data of immunotherapy-treated and non-treated tumors from sensitive and resistant murine models. Using this, we uncover that immune checkpoint therapy induces T follicular helper cell activation of B cells to facilitate the anti-tumor response in these models. We also show that B cell activation of T cells and the generation of antibody are key to immunotherapy response and propose a new biomarker for immune checkpoint therapy. In total, this work presents resources of new preclinical models of breast cancer with large mRNA-seq and single-cell RNA-seq datasets annotated for sensitivity to therapy and uncovers new components of response to immune checkpoint inhibitors.
Assuntos
Linfócitos B/imunologia , Imunoterapia , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/imunologia , Mutação/genética , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Antígeno CTLA-4/metabolismo , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Engenharia Genética , Genoma , Humanos , Imunoglobulina G/metabolismo , Ativação Linfocitária/imunologia , Neoplasias Mamárias Animais/terapia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapiaRESUMO
Whether synthetic genomes can power life has attracted broad interest in the synthetic biology field. Here, we report de novo synthesis of the largest eukaryotic chromosome thus far, synIV, a 1,454,621-bp yeast chromosome resulting from extensive genome streamlining and modification. We developed megachunk assembly combined with a hierarchical integration strategy, which significantly increased the accuracy and flexibility of synthetic chromosome construction. Besides the drastic sequence changes, we further manipulated the 3D structure of synIV to explore spatial gene regulation. Surprisingly, we found few gene expression changes, suggesting that positioning inside the yeast nucleoplasm plays a minor role in gene regulation. Lastly, we tethered synIV to the inner nuclear membrane via its hundreds of loxPsym sites and observed transcriptional repression of the entire chromosome, demonstrating chromosome-wide transcription manipulation without changing the DNA sequences. Our manipulation of the spatial structure of synIV sheds light on higher-order architectural design of the synthetic genomes.
Assuntos
Núcleo Celular , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Cromossomos/genética , Genoma Fúngico , Biologia Sintética/métodosRESUMO
Senescent cells drive age-related tissue dysfunction partially through the induction of a chronic senescence-associated secretory phenotype (SASP)1. Mitochondria are major regulators of the SASP; however, the underlying mechanisms have not been elucidated2. Mitochondria are often essential for apoptosis, a cell fate distinct from cellular senescence. During apoptosis, widespread mitochondrial outer membrane permeabilization (MOMP) commits a cell to die3. Here we find that MOMP occurring in a subset of mitochondria is a feature of cellular senescence. This process, called minority MOMP (miMOMP), requires BAX and BAK macropores enabling the release of mitochondrial DNA (mtDNA) into the cytosol. Cytosolic mtDNA in turn activates the cGAS-STING pathway, a major regulator of the SASP. We find that inhibition of MOMP in vivo decreases inflammatory markers and improves healthspan in aged mice. Our results reveal that apoptosis and senescence are regulated by similar mitochondria-dependent mechanisms and that sublethal mitochondrial apoptotic stress is a major driver of the SASP. We provide proof-of-concept that inhibition of miMOMP-induced inflammation may be a therapeutic route to improve healthspan.
Assuntos
Apoptose , Senescência Celular , Citosol , DNA Mitocondrial , Mitocôndrias , Animais , Camundongos , Citosol/metabolismo , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria , Estudo de Prova de Conceito , Inflamação/metabolismo , Fenótipo , Longevidade , Envelhecimento SaudávelRESUMO
Deconvolution of regulatory mechanisms that drive transcriptional programs in cancer cells is key to understanding tumor biology. Herein, we present matched transcriptome (scRNA-seq) and chromatin accessibility (scATAC-seq) profiles at single-cell resolution from human ovarian and endometrial tumors processed immediately following surgical resection. This dataset reveals the complex cellular heterogeneity of these tumors and enabled us to quantitatively link variation in chromatin accessibility to gene expression. We show that malignant cells acquire previously unannotated regulatory elements to drive hallmark cancer pathways. Moreover, malignant cells from within the same patients show substantial variation in chromatin accessibility linked to transcriptional output, highlighting the importance of intratumoral heterogeneity. Finally, we infer the malignant cell type-specific activity of transcription factors. By defining the regulatory logic of cancer cells, this work reveals an important reliance on oncogenic regulatory elements and highlights the ability of matched scRNA-seq/scATAC-seq to uncover clinically relevant mechanisms of tumorigenesis in gynecologic cancers.
Assuntos
Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , RNA Citoplasmático Pequeno/genética , Idoso , Carcinogênese , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Transição Epitelial-Mesenquimal , Feminino , Tumores do Estroma Gastrointestinal/genética , Biblioteca Gênica , Técnicas Genéticas , Genômica , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Oncogenes , Ovário/metabolismo , Proteômica , RNA-Seq , Elementos Reguladores de Transcrição , Fatores de Transcrição/metabolismo , TranscriptomaRESUMO
Mitochondrial outer membrane permeabilisation (MOMP) is often essential for apoptosis, by enabling cytochrome c release that leads to caspase activation and rapid cell death. Recently, MOMP has been shown to be inherently pro-inflammatory with emerging cellular roles, including its ability to elicit anti-tumour immunity. Nonetheless, how MOMP triggers inflammation and how the cell regulates this remains poorly defined. We find that upon MOMP, many proteins localised either to inner or outer mitochondrial membranes are ubiquitylated in a promiscuous manner. This extensive ubiquitylation serves to recruit the essential adaptor molecule NEMO, leading to the activation of pro-inflammatory NF-κB signalling. We show that disruption of mitochondrial outer membrane integrity through different means leads to the engagement of a similar pro-inflammatory signalling platform. Therefore, mitochondrial integrity directly controls inflammation, such that permeabilised mitochondria initiate NF-κB signalling.
Assuntos
NF-kappa B , Ubiquitina , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Ubiquitina/metabolismo , Membranas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Apoptose/fisiologia , Inflamação/metabolismoRESUMO
We performed an extensive immunogenomic analysis of more than 10,000 tumors comprising 33 diverse cancer types by utilizing data compiled by TCGA. Across cancer types, we identified six immune subtypes-wound healing, IFN-γ dominant, inflammatory, lymphocyte depleted, immunologically quiet, and TGF-ß dominant-characterized by differences in macrophage or lymphocyte signatures, Th1:Th2 cell ratio, extent of intratumoral heterogeneity, aneuploidy, extent of neoantigen load, overall cell proliferation, expression of immunomodulatory genes, and prognosis. Specific driver mutations correlated with lower (CTNNB1, NRAS, or IDH1) or higher (BRAF, TP53, or CASP8) leukocyte levels across all cancers. Multiple control modalities of the intracellular and extracellular networks (transcription, microRNAs, copy number, and epigenetic processes) were involved in tumor-immune cell interactions, both across and within immune subtypes. Our immunogenomics pipeline to characterize these heterogeneous tumors and the resulting data are intended to serve as a resource for future targeted studies to further advance the field.
Assuntos
Genômica/métodos , Neoplasias , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Humanos , Interferon gama/genética , Interferon gama/imunologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Neoplasias/classificação , Neoplasias/genética , Neoplasias/imunologia , Prognóstico , Equilíbrio Th1-Th2/fisiologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia , Cicatrização/genética , Cicatrização/imunologia , Adulto JovemRESUMO
River networks are composed of a mainstem and tributaries. These tributaries dissect landscapes, regulate water and habitat availability, and transport sediment and nutrients. Despite the importance of tributaries, we currently lack theory and data describing whether and how tributary length and spacing varies within watersheds, thereby limiting our ability to accurately describe river network geometry. We address this knowledge gap by analyzing 4,696 tributaries across six landscapes with varying climate, tectonic setting, and lithology. Our results show that both tributary length and spacing systematically increase with downstream distance along the mainstem river, following a power-law scaling. This power-law scaling can be modulated by basin shape, with tributaries becoming shorter and, in some cases, more closely spaced as basin elongate. Furthermore, the power-law scaling may break down in cases where river networks have been disturbed by pervasive faulting, raising the possibility that the scaling we observe is not unique to all branching networks, and instead may be universal across undisturbed fluvial networks. These findings can be used to improve predictions of river network geometry and potentially to distinguish fluvial river networks from other branching networks.
RESUMO
Microbiota comprise the bulk of life's diversity, yet we know little about how populations of microbes accumulate adaptive diversity across natural landscapes. Adaptation to stressful soil conditions in plants provides seminal examples of adaptation in response to natural selection via allelic substitution. For microbes symbiotic with plants however, horizontal gene transfer allows for adaptation via gene gain and loss, which could generate fundamentally different evolutionary dynamics. We use comparative genomics and genetics to elucidate the evolutionary mechanisms of adaptation to physiologically stressful serpentine soils in rhizobial bacteria in western North American grasslands. In vitro experiments demonstrate that the presence of a locus of major effect, the nre operon, is necessary and sufficient to confer adaptation to nickel, a heavy metal enriched to toxic levels in serpentine soil, and a major axis of environmental soil chemistry variation. We find discordance between inferred evolutionary histories of the core genome and nreAXY genes, which often reside in putative genomic islands. This suggests that the evolutionary history of this adaptive variant is marked by frequent losses, and/or gains via horizontal acquisition across divergent rhizobium clades. However, different nre alleles confer distinct levels of nickel resistance, suggesting allelic substitution could also play a role in rhizobium adaptation to serpentine soil. These results illustrate that the interplay between evolution via gene gain and loss and evolution via allelic substitution may underlie adaptation in wild soil microbiota. Both processes are important to consider for understanding adaptive diversity in microbes and improving stress-adapted microbial inocula for human use.
Assuntos
Metais Pesados , Rhizobium , Humanos , Rhizobium/genética , Níquel , Metais Pesados/toxicidade , Genômica , SoloRESUMO
In eukaryotic protein N-glycosylation, a series of glycosyltransferases catalyse the biosynthesis of a dolichylpyrophosphate-linked oligosaccharide before its transfer onto acceptor proteins1. The final seven steps occur in the lumen of the endoplasmic reticulum (ER) and require dolichylphosphate-activated mannose and glucose as donor substrates2. The responsible enzymes-ALG3, ALG9, ALG12, ALG6, ALG8 and ALG10-are glycosyltransferases of the C-superfamily (GT-Cs), which are loosely defined as containing membrane-spanning helices and processing an isoprenoid-linked carbohydrate donor substrate3,4. Here we present the cryo-electron microscopy structure of yeast ALG6 at 3.0 Å resolution, which reveals a previously undescribed transmembrane protein fold. Comparison with reported GT-C structures suggests that GT-C enzymes contain a modular architecture with a conserved module and a variable module, each with distinct functional roles. We used synthetic analogues of dolichylphosphate-linked and dolichylpyrophosphate-linked sugars and enzymatic glycan extension to generate donor and acceptor substrates using purified enzymes of the ALG pathway to recapitulate the activity of ALG6 in vitro. A second cryo-electron microscopy structure of ALG6 bound to an analogue of dolichylphosphate-glucose at 3.9 Å resolution revealed the active site of the enzyme. Functional analysis of ALG6 variants identified a catalytic aspartate residue that probably acts as a general base. This residue is conserved in the GT-C superfamily. Our results define the architecture of ER-luminal GT-C enzymes and provide a structural basis for understanding their catalytic mechanisms.
Assuntos
Microscopia Crioeletrônica , Retículo Endoplasmático/enzimologia , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Biocatálise , Domínio Catalítico , Sequência Conservada , Dolicol Monofosfato Manose/metabolismo , Fosfatos de Dolicol/metabolismo , Glucose/análogos & derivados , Glucose/metabolismo , Glicosiltransferases/deficiência , Técnicas In Vitro , Lipídeos , Proteínas de Membrana/deficiência , Modelos Moleculares , Mutação , Monossacarídeos de Poli-Isoprenil Fosfato/química , Monossacarídeos de Poli-Isoprenil Fosfato/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Especificidade por SubstratoRESUMO
Androgen receptor splice variant 7 (AR-V7) is crucial for prostate cancer progression and therapeutic resistance. We show that, independent of ligand, AR-V7 binds both androgen-responsive elements (AREs) and non-canonical sites distinct from full-length AR (AR-FL) targets. Consequently, AR-V7 not only recapitulates AR-FL's partial functions but also regulates an additional gene expression program uniquely via binding to gene promoters rather than ARE enhancers. AR-V7 binding and AR-V7-mediated activation at these unique targets do not require FOXA1 but rely on ZFX and BRD4. Knockdown of ZFX or select unique targets of AR-V7/ZFX, or BRD4 inhibition, suppresses growth of castration-resistant prostate cancer cells. We also define an AR-V7 direct target gene signature that correlates with AR-V7 expression in primary tumors, differentiates metastatic prostate cancer from normal, and predicts poor prognosis. Thus, AR-V7 has both ARE/FOXA1 canonical and ZFX-directed non-canonical regulatory functions in the evolution of anti-androgen therapeutic resistance, providing information to guide effective therapeutic strategies.
Assuntos
Processamento Alternativo/genética , Carcinogênese/genética , Fatores de Transcrição Kruppel-Like/genética , Oncogenes/genética , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genéticaRESUMO
A synthetic biology approach toward constructing an RNA-based genome expands our understanding of living things and opens avenues for technological advancement. For the precise design of an artificial RNA replicon either from scratch or based on a natural RNA replicon, understanding structure-function relationships of RNA sequences is critical. However, our knowledge remains limited to a few particular structural elements intensively studied so far. Here, we conducted a series of site-directed mutagenesis studies of yeast narnaviruses ScNV20S and ScNV23S, perhaps the simplest natural autonomous RNA replicons, to identify RNA elements required for maintenance and replication. RNA structure disruption corresponding to various portions of the entire narnavirus genome suggests that pervasive RNA folding, in addition to the precise secondary structure of genome termini, is essential for maintenance of the RNA replicon in vivo. Computational RNA structure analyses suggest that this scenario likely applies to other "narna-like" viruses. This finding implies selective pressure on these simplest autonomous natural RNA replicons to fold into a unique structure that acquires both thermodynamic and biological stability. We propose the importance of pervasive RNA folding for the design of RNA replicons that could serve as a platform for in vivo continuous evolution as well as an interesting model to study the origin of life.
Assuntos
Vírus de RNA , RNA Viral , RNA Viral/genética , RNA Viral/química , Dobramento de RNA , Genoma Viral/genética , Vírus de RNA/genética , Sequência de Bases , Replicon/genética , Replicação ViralRESUMO
Programmed ferroptotic death eliminates cells in all major organs and tissues with imbalanced redox metabolism due to overwhelming iron-catalyzed lipid peroxidation under insufficient control by thiols (Glutathione (GSH)). Ferroptosis has been associated with the pathogenesis of major chronic degenerative diseases and acute injuries of the brain, cardiovascular system, liver, kidneys, and other organs, and its manipulation offers a promising new strategy for anticancer therapy. This explains the high interest in designing new small-molecule-specific inhibitors against ferroptosis. Given the role of 15-lipoxygenase (15LOX) association with phosphatidylethanolamine (PE)-binding protein 1 (PEBP1) in initiating ferroptosis-specific peroxidation of polyunsaturated PE, we propose a strategy of discovering antiferroptotic agents as inhibitors of the 15LOX/PEBP1 catalytic complex rather than 15LOX alone. Here we designed, synthesized, and tested a customized library of 26 compounds using biochemical, molecular, and cell biology models along with redox lipidomic and computational analyses. We selected two lead compounds, FerroLOXIN-1 and 2, which effectively suppressed ferroptosis in vitro and in vivo without affecting the biosynthesis of pro-/anti-inflammatory lipid mediators in vivo. The effectiveness of these lead compounds is not due to radical scavenging or iron-chelation but results from their specific mechanisms of interaction with the 15LOX-2/PEBP1 complex, which either alters the binding pose of the substrate [eicosatetraenoyl-PE (ETE-PE)] in a nonproductive way or blocks the predominant oxygen channel thus preventing the catalysis of ETE-PE peroxidation. Our successful strategy may be adapted to the design of additional chemical libraries to reveal new ferroptosis-targeting therapeutic modalities.
Assuntos
Ferroptose , Proteína de Ligação a Fosfatidiletanolamina , Glutationa/metabolismo , Ferro/metabolismo , Peroxidação de Lipídeos , Lipídeos , Oxirredução , Proteína de Ligação a Fosfatidiletanolamina/antagonistas & inibidoresRESUMO
Oxygen played a pivotal role in the evolution of multicellularity during the Cambrian Explosion. Not surprisingly, responses to fluctuating oxygen concentrations are integral to the evolution of cancer-a disease characterized by the breakdown of multicellularity. Poorly organized tumor vasculature results in chaotic patterns of blood flow characterized by large spatial and temporal variations in intra-tumoral oxygen concentrations. Hypoxia-inducible growth factor (HIF-1) plays a pivotal role in enabling cells to adapt, metabolize, and proliferate in low oxygen conditions. HIF-1 is often constitutively activated in cancers, underscoring its importance in cancer progression. Here, we argue that the phenotypic changes mediated by HIF-1, in addition to adapting the cancer cells to their local environment, also "pre-adapt" them for proliferation at distant, metastatic sites. HIF-1-mediated adaptations include a metabolic shift towards anaerobic respiration or glycolysis, activation of cell survival mechanisms like phenotypic plasticity and epigenetic reprogramming, and formation of tumor vasculature through angiogenesis. Hypoxia induced epigenetic reprogramming can trigger epithelial to mesenchymal transition in cancer cells-the first step in the metastatic cascade. Highly glycolytic cells facilitate local invasion by acidifying the tumor microenvironment. New blood vessels, formed due to angiogenesis, provide cancer cells a conduit to the circulatory system. Moreover, survival mechanisms acquired by cancer cells in the primary site allow them to remodel tissue at the metastatic site generating tumor promoting microenvironment. Thus, hypoxia in the primary tumor promoted adaptations conducive to all stages of the metastatic cascade from the initial escape entry into a blood vessel, intravascular survival, extravasation into distant tissues, and establishment of secondary tumors.
Assuntos
Carcinogênese , Metástase Neoplásica , Neoplasias , Humanos , Neoplasias/patologia , Neoplasias/genética , Neoplasias/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Fator 1 Induzível por Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/genética , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neovascularização Patológica/metabolismo , Transição Epitelial-Mesenquimal/genética , Microambiente Tumoral/genética , Epigênese Genética , Regulação Neoplásica da Expressão GênicaRESUMO
C-linked glycosylation is essential for the trafficking, folding and function of secretory and transmembrane proteins involved in cellular communication processes. The tryptophan C-mannosyltransferase (CMT) enzymes that install the modification attach a mannose to the first tryptophan of WxxW/C sequons in nascent polypeptide chains by an unknown mechanism. Here, we report cryogenic-electron microscopy structures of Caenorhabditis elegans CMT in four key states: apo, acceptor peptide-bound, donor-substrate analog-bound and as a trapped ternary complex with both peptide and a donor-substrate mimic bound. The structures indicate how the C-mannosylation sequon is recognized by this CMT and its paralogs, and how sequon binding triggers conformational activation of the donor substrate: a process relevant to all glycosyltransferase C superfamily enzymes. Our structural data further indicate that the CMTs adopt an unprecedented electrophilic aromatic substitution mechanism to enable the C-glycosylation of proteins. These results afford opportunities for understanding human disease and therapeutic targeting of specific CMT paralogs.
Assuntos
Manosiltransferases , Triptofano , Humanos , Manosiltransferases/genética , Manosiltransferases/química , Manosiltransferases/metabolismo , Triptofano/metabolismo , Glicosilação , Peptídeos/metabolismo , Proteínas de Membrana/metabolismoRESUMO
Therapeutic interventions are designed to perturb the function of a biological system. However, there are many types of proteins that cannot be targeted with conventional small molecule drugs. Accordingly, many identified gene-regulatory drivers and downstream effectors are currently undruggable. Drivers and effectors are often connected by druggable signaling and regulatory intermediates. Methods to identify druggable intermediates therefore have general value in expanding the set of targets available for hypothesis-driven validation. Here we identify and prioritize potential druggable intermediates by developing a network perturbation theory, termed NetPert, for response functions of biological networks. Dynamics are defined by a network structure in which vertices represent genes and proteins, and edges represent gene-regulatory interactions and protein-protein interactions. Perturbation theory for network dynamics prioritizes targets that interfere with signaling from driver to response genes. Applications to organoid models for metastatic breast cancer demonstrate the ability of this mathematical framework to identify and prioritize druggable intermediates. While the short-time limit of the perturbation theory resembles betweenness centrality, NetPert is superior in generating target rankings that correlate with previous wet-lab assays and are more robust to incomplete or noisy network data. NetPert also performs better than a related graph diffusion approach. Wet-lab assays demonstrate that drugs for targets identified by NetPert, including targets that are not themselves differentially expressed, are active in suppressing additional metastatic phenotypes.
Assuntos
Neoplasias da Mama , Biologia Computacional , Redes Reguladoras de Genes , Humanos , Redes Reguladoras de Genes/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Transdução de Sinais/efeitos dos fármacos , Modelos Biológicos , Antineoplásicos/farmacologia , FemininoRESUMO
Waterfalls are inspiring landforms that set the pace of landscape evolution as a result of bedrock incision1-3. They communicate changes in sea level or tectonic uplift throughout landscapes2,4 or stall river incision, disconnecting landscapes from downstream perturbations3,5. Here we use a flume experiment with constant water discharge and sediment feed to show that waterfalls can form from a planar, homogeneous bedrock bed in the absence of external perturbations. In our experiment, instabilities between flow hydraulics, sediment transport and bedrock erosion lead to undulating bedforms, which grow to become waterfalls. We propose that it is plausible that the origin of some waterfalls in natural systems can be attributed to this intrinsic formation process and we suggest that investigations to distinguish self-formed from externally forced waterfalls may help to improve the reconstruction of Earth history from landscapes.
RESUMO
Metastasis is the major driver of death in patients with cancer. Invasion of surrounding tissues and metastasis have been proposed to initiate following loss of the intercellular adhesion protein, E-cadherin1,2, on the basis of inverse correlations between in vitro migration and E-cadherin levels3. However, this hypothesis is inconsistent with the observation that most breast cancers are invasive ductal carcinomas and express E-cadherin in primary tumours and metastases4. To resolve this discrepancy, we tested the genetic requirement for E-cadherin in metastasis using mouse and human models of both luminal and basal invasive ductal carcinomas. Here we show that E-cadherin promotes metastasis in diverse models of invasive ductal carcinomas. While loss of E-cadherin increased invasion, it also reduced cancer cell proliferation and survival, circulating tumour cell number, seeding of cancer cells in distant organs and metastasis outgrowth. Transcriptionally, loss of E-cadherin was associated with upregulation of genes involved in transforming growth factor-ß (TGFß), reactive oxygen species and apoptosis signalling pathways. At the cellular level, disseminating E-cadherin-negative cells exhibited nuclear enrichment of SMAD2/3, oxidative stress and increased apoptosis. Colony formation of E-cadherin-negative cells was rescued by inhibition of TGFß-receptor signalling, reactive oxygen accumulation or apoptosis. Our results reveal that E-cadherin acts as a survival factor in invasive ductal carcinomas during the detachment, systemic dissemination and seeding phases of metastasis by limiting reactive oxygen-mediated apoptosis. Identifying molecular strategies to inhibit E-cadherin-mediated survival in metastatic breast cancer cells may have potential as a therapeutic approach for breast cancer.