Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(23): 4055-4074, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-35796562

RESUMO

NADK2 encodes the mitochondrial form of nicotinamide adenine dinucleotide (NAD) kinase, which phosphorylates NAD. Rare recessive mutations in human NADK2 are associated with a syndromic neurological mitochondrial disease that includes metabolic changes, such as hyperlysinemia and 2,4 dienoyl CoA reductase (DECR) deficiency. However, the full pathophysiology resulting from NADK2 deficiency is not known. Here, we describe two chemically induced mouse mutations in Nadk2-S326L and S330P-which cause severe neuromuscular disease and shorten lifespan. The S330P allele was characterized in detail and shown to have marked denervation of neuromuscular junctions by 5 weeks of age and muscle atrophy by 11 weeks of age. Cerebellar Purkinje cells also showed progressive degeneration in this model. Transcriptome profiling on brain and muscle was performed at early and late disease stages. In addition, metabolomic profiling was performed on the brain, muscle, liver and spinal cord at the same ages and on plasma at 5 weeks. Combined transcriptomic and metabolomic analyses identified hyperlysinemia, DECR deficiency and generalized metabolic dysfunction in Nadk2 mutant mice, indicating relevance to the human disease. We compared findings from the Nadk model to equivalent RNA sequencing and metabolomic datasets from a mouse model of infantile neuroaxonal dystrophy, caused by recessive mutations in Pla2g6. This enabled us to identify disrupted biological processes that are common between these mouse models of neurological disease, as well as those processes that are gene-specific. These findings improve our understanding of the pathophysiology of neuromuscular diseases and describe mouse models that will be useful for future preclinical studies.


Assuntos
Hiperlisinemias , Distrofias Neuroaxonais , Animais , Camundongos , Humanos , NAD/genética , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Mitocondriais/genética , Fosfolipases A2 do Grupo VI/genética
2.
Clin Genet ; 84(2): 167-74, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23621901

RESUMO

Primary open angle glaucoma (POAG) is a genetically and phenotypically complex disease that is a leading cause of blindness worldwide. Previously we completed a genome-wide scan for early-onset POAG that identified a locus on 9q22 (GLC1J). To identify potential causative variants underlying GLC1J, we used targeted DNA capture followed by high throughput sequencing of individuals from four GLC1J pedigrees, followed by Sanger sequencing to screen candidate variants in additional pedigrees. A mutation likely to cause early-onset glaucoma was not identified, however COL15A1 variants were found in the youngest affected members of 7 of 15 pedigrees with variable disease onset. In addition, the most common COL15A1 variant, R163H, influenced the age of onset in adult POAG cases. RNA in situ hybridization of mouse eyes shows that Col15a1 is expressed in the multiple ocular structures including ciliary body, astrocytes of the optic nerve and cells in the ganglion cell layer. Sanger sequencing of COL18A1, a related multiplexin collagen, identified a rare variant, A1381T, in members of three additional pedigrees with early-onset disease. These results suggest genetic variation in COL15A1 and COL18A1 can modify the age of onset of both early and late onset POAG.


Assuntos
Colágeno Tipo XVIII/genética , Colágeno/genética , Variação Genética , Glaucoma de Ângulo Aberto/genética , Adulto , Idade de Início , Idoso , Animais , Éxons , Feminino , Genótipo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único
3.
J Med Genet ; 43(6): 490-5, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16107487

RESUMO

BACKGROUND: Porencephaly (cystic cavities of the brain) is caused by perinatal vascular accidents from various causes. Several familial cases have been described and autosomal dominant inheritance linked to chromosome 13q has been suggested. COL4A1 is an essential component in basal membrane stability. Mouse mutants bearing an in-frame deletion of exon 40 of Col4a1 either die from haemorrhage in the perinatal period or have porencephaly in survivors. A report of inherited mutations in COL4A1 in two families has shown that familial porencephaly may have the same cause in humans. OBJECTIVE: To describe three novel COL4A1 mutations. RESULTS: The three mutations occurred in three unrelated Dutch families. There were two missense mutations of glycine residues predicted to result in abnormal collagen IV assembly, and one mutation predicted to abolish the traditional COL4A1 start codon. The last mutation was also present in an asymptomatic obligate carrier with white matter abnormalities on brain magnetic resonance imaging. CONCLUSIONS: This observation confirms COL4A1 as a major locus for genetic predisposition to perinatal cerebral haemorrhage and porencephaly and suggests variable expression of COL4A1 mutations.


Assuntos
Encefalopatias/genética , Colágeno Tipo IV/genética , Adulto , Encefalopatias/diagnóstico , Encefalopatias/patologia , Criança , Pré-Escolar , Colágeno Tipo IV/química , Colágeno Tipo IV/fisiologia , Análise Mutacional de DNA , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA