Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neuropathol Appl Neurobiol ; 48(7): e12846, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962550

RESUMO

AIMS: Dysferlinopathy is an autosomal recessive muscular dystrophy, caused by bi-allelic variants in the gene encoding dysferlin (DYSF). Onset typically occurs in the second to third decade and is characterised by slowly progressive skeletal muscle weakness and atrophy of the proximal and/or distal muscles of the four limbs. There are rare cases of symptomatic DYSF variant carriers. Here, we report a large family with a dominantly inherited hyperCKaemia and late-onset muscular dystrophy. METHODS AND RESULTS: Genetic analysis identified a co-segregating novel DYSF variant [NM_003494.4:c.6207del p.(Tyr2070Metfs*4)]. No secondary variants in DYSF or other dystrophy-related genes were identified on whole genome sequencing and analysis of the proband's DNA. Skeletal muscle involvement was milder and later onset than typical dysferlinopathy presentations; these clinical signs manifested in four individuals, all between the fourth and sixth decades of life. All individuals heterozygous for the c.6207del variant had hyperCKaemia. Histological analysis of skeletal muscle biopsies across three generations showed clear dystrophic signs, including inflammatory infiltrates, regenerating myofibres, increased variability in myofibre size and internal nuclei. Muscle magnetic resonance imaging revealed fatty replacement of muscle in two individuals. Western blot and immunohistochemical analysis of muscle biopsy demonstrated consistent reduction of dysferlin staining. Allele-specific quantitative PCR analysis of DYSF mRNA from patient muscle found that the variant, localised to the extreme C-terminus of dysferlin, does not activate post-transcriptional mRNA decay. CONCLUSIONS: We propose that this inheritance pattern may be underappreciated and that other late-onset muscular dystrophy cases with mono-allelic DYSF variants, particularly C-terminal premature truncation variants, may represent dominant forms of disease.


Assuntos
Disferlina , Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Humanos , Disferlina/genética , Proteínas de Membrana/genética , Proteínas Musculares/genética , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Linhagem , Masculino , Feminino
2.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630425

RESUMO

Duchenne muscular dystrophy (DMD) is a severe muscle wasting disease typically caused by protein-truncating mutations that preclude synthesis of a functional dystrophin. Exonic deletions are the most common type of DMD lesion, however, whole exon duplications account for between 10-15% of all reported mutations. Here, we describe in vitro evaluation of antisense oligonucleotide-induced splice switching strategies to re-frame the transcript disrupted by a multi-exon duplication within the DMD gene. Phosphorodiamidate morpholino oligomers and phosphorodiamidate morpholino oligomers coupled to a cell penetrating peptide were evaluated in a Duchenne muscular dystrophy patient cell strain carrying an exon 14-17 duplication. Two strategies were employed; the conventional approach was to remove both copies of exon 17 in addition to exon 18, and the second strategy was to remove only the first copy of exon 17. Both approaches result in a larger than normal but in-frame DMD transcript, but surprisingly, the removal of only the first exon 17 appeared to be more efficient in restoring dystrophin, as determined using western blotting. The emergence of a normal sized DMD mRNA transcript that was not apparent in untreated samples may have arisen from back splicing and could also account for some of the dystrophin protein being produced.


Assuntos
Distrofina/genética , Éxons/genética , Terapia Genética/métodos , Células Cultivadas , Distrofina/metabolismo , Humanos , Mutação INDEL/genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Oligonucleotídeos/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Splicing de RNA/genética , Splicing de RNA/fisiologia
3.
Brain ; 138(Pt 4): 836-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681410

RESUMO

Dystroglycanopathies are a heterogeneous group of diseases with a broad phenotypic spectrum ranging from severe disorders with congenital muscle weakness, eye and brain structural abnormalities and intellectual delay to adult-onset limb-girdle muscular dystrophies without mental retardation. Most frequently the disease onset is congenital or during childhood. The exception is FKRP mutations, in which adult onset is a common presentation. Here we report eight patients from five non-consanguineous families where next generation sequencing identified mutations in the GMPPB gene. Six patients presented as an adult or adolescent-onset limb-girdle muscular dystrophy, one presented with isolated episodes of rhabdomyolysis, and one as a congenital muscular dystrophy. This report expands the phenotypic spectrum of GMPPB mutations to include limb-girdle muscular dystrophies with adult onset with or without intellectual disability, or isolated rhabdomyolysis.


Assuntos
Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação/genética , Nucleotidiltransferases/genética , Fenótipo , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Distroglicanas/genética , Evolução Fatal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
4.
Int J Exp Pathol ; 94(6): 418-25, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24205796

RESUMO

The aim of this study is to determine whether primary over-expression of AßPP in skeletal muscle results in the development of features of inclusion body myositis (IBM) in a new lineage of the MCK-AßPP transgenic mouse. Quantitative histological, immunohistochemical and western blotting studies were performed on muscles from 3 to 18 month old transgenic and wild-type C57BL6/SJL mice. Electron microscopy was also performed on muscle sections from selected animals. Although western blotting confirmed that there was over-expression of full length AßPP in transgenic mouse muscles, deposition of amyloid-ß and fibrillar amyloid could not be demonstrated histochemically or with electron microscopy. Additionally, other changes typical of IBM such as rimmed vacuoles, cytochrome C oxidase-deficient fibres, upregulation of MHC antigens, lymphocytic inflammatory infiltration and T cell fibre invasion were absent. The most prominent finding in both transgenic and wild-type animals was the presence of tubular aggregates which was age-related and largely restricted to male animals. Expression of full length AßPP in this MCK-AßPP mouse lineage did not reach the levels required for immunodetection or deposition of amyloid-ß as in the original transgenic strains, and was not associated with the development of pathological features of IBM. These negative results emphasise the potential pitfalls of re-deriving transgenic mouse strains in different laboratories.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Creatina Quinase Forma MM/genética , Músculo Esquelético/metabolismo , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Creatina Quinase Forma MM/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Transgenes/genética , Regulação para Cima , Vacúolos/ultraestrutura
5.
Methods Mol Biol ; 2587: 239-251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36401034

RESUMO

The mutation c.-32-13T>G in the GAA gene impacts normal exon 2 splicing and is found in two-thirds of late-onset Pompe disease cases. We have explored a therapeutic strategy using splice modulating phosphorodiamidate morpholino oligomers to enhance GAA exon 2 inclusion in the mature mRNA of patients carrying this common mutation. We performed in silico analysis of the GAA gene transcript for potential splicing silencers and designed oligomers targeting motifs predicted to enhance exon 2 retention in the mature mRNA. Two patient-derived fibroblasts were obtained from Coriell Institute for Medical Research, and seven fibroblast strains from unrelated patients were supplied by Westmead Hospital in Sydney, Australia. Both fibroblasts and forced-myogenic cells were treated with optimized phosphorodiamidate morpholino oligomers supplied by Sarepta Therapeutics. Total RNA and protein were extracted from the cells after incubation with phosphorodiamidate morpholino oligomers, and RT-PCR and RT-qPCR were performed to confirm exon 2 inclusion is enhanced. Acid α-glucosidase activity and expression levels were also assessed to confirm therapeutic potential.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Humanos , Adulto , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Morfolinos/genética , Splicing de RNA , Mutação , RNA Mensageiro/genética
6.
Front Pharmacol ; 13: 868863, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392567

RESUMO

Introduction: Severity and disease progression in people with Cystic Fibrosis (CF) is typically dependent on their genotype. One potential therapeutic strategy for people with specific mutations is exon skipping with antisense oligonucleotides (AO). CFTR exon 9 is an in-frame exon and hence the exclusion of this exon would excise only 31 amino acids but not alter the reading frame of the remaining mRNA. Splice mutations 1209 + 1 G > C and 1209 + 2 T > G were documented to cause CFTR exon 9 skipping and these variants were reported to manifest as a milder CF disease, therefore exon 9 skipping could be beneficial for people with class I mutations that affect exon 9 such as p.Trp401X. While the impact of exon 9 skipping on gene expression and cellular pathways can be studied in cells in vitro, trace amount of full-length normal or mutated material could confound the evaluation. To overcome this limitation, the impact of CFTR exon 9 skipping on disease phenotype and severity is more effectively evaluated in a small animal model. It was hypothesised that antisense oligonucleotide-mediated skipping this particular exon could result in a "mild mouse CF phenotype". Methods: Cftr exon 9 deleted mice were generated using homologous recombination. Survival of homozygous (Cftr Δ9/Δ9 ) and heterozygous (Cftr Δ9/+ ) mice was compared to that of other CF mouse models, and lung and intestinal organ histology examined for any pathologies. Primary airway epithelial cells (pAECs) were harvested from Cftr Δ9/Δ9 mice and cultured at the Air Liquid Interface for CFTR functional assessment using Ussing Chamber analysis. Results: A Cftr Δ9/Δ9 mouse model presented with intestinal obstructions, and at time of weaning (21 days). Cftr Δ9/Δ9 mice had a survival rate of 83% that dropped to 38% by day 50. Histological sections of the small intestine from Cftr Δ9/Δ9 mice showed more goblet cells and mucus accumulation than samples from the Cftr Δ9/+ littermates. Airway epithelial cell cultures established from Cftr Δ9/Δ9 mice were not responsive to forskolin stimulation. Summary: The effect of Cftr exon 9 deletion on Cftr function was assessed and it was determined that the encoded Cftr isoform did not result in a milder "mouse CF disease phenotype," suggesting that Cftr exon 9 is not dispensable, although further investigation in human CF pAECs would be required to confirm this observation.

7.
BMC Med Genet ; 12: 141, 2011 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-22013876

RESUMO

BACKGROUND: Antisense oligomer induced exon skipping aims to reduce the severity of Duchenne muscular dystrophy by redirecting splicing during pre-RNA processing such that the causative mutation is by-passed and a shorter but partially functional Becker muscular dystrophy-like dystrophin isoform is produced. Normal exons are generally targeted to restore the dystrophin reading frame however, an appreciable subset of dystrophin mutations are intra-exonic and therefore have the potential to compromise oligomer efficiency, necessitating personalised oligomer design for some patients. Although antisense oligomers are easily personalised, it remains unclear whether all patient polymorphisms within antisense oligomer target sequences will require the costly process of producing and validating patient specific compounds. METHODS: Here we report preclinical testing of a panel of splice switching antisense oligomers, designed to excise exon 25 from the dystrophin transcript, in normal and dystrophic patient cells. These patient cells harbour a single base insertion in exon 25 that lies within the target sequence of an oligomer shown to be effective at removing exon 25. RESULTS: It was anticipated that such a mutation would compromise oligomer binding and efficiency. However, we show that, despite the mismatch an oligomer, designed and optimised to excise exon 25 from the normal dystrophin mRNA, removes the mutated exon 25 more efficiently than the mutation-specific oligomer. CONCLUSION: This raises the possibility that mismatched AOs could still be therapeutically applicable in some cases, negating the necessity to produce patient-specific compounds.


Assuntos
Reparo de Erro de Pareamento de DNA , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Oligonucleotídeos Antissenso/genética , Células Cultivadas , Éxons/genética , Humanos , Mutagênese Insercional/genética , Splicing de RNA , Fases de Leitura/genética
8.
Mol Ther ; 18(6): 1218-23, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20332768

RESUMO

Antisense oligomer-induced manipulation of dystrophin pre-mRNA processing can remove exons carrying mutations, or exclude exons flanking frameshifting mutations, and restore dystrophin expression in dystrophinopathy models and in Duchenne muscular dystrophy (DMD) patients. Splice intervention can also be used to manipulate the normal dystrophin pre-mRNA processing and ablate dystrophin expression in wild-type mice, with signs of pathology being induced in selected muscles within 4 weeks of commencing treatment. The disruption of normal dystrophin pre-mRNA processing to alter the reading frame can be very efficient and offers an alternative mechanism to RNA silencing for gene suppression. In addition, it is possible to remove in-frame exon blocks from the DMD gene transcript and induce specific dystrophin isoforms that retain partial functionality, without having to generate transgenic animal models. Specific exon removal to yield in-frame dystrophin transcripts will facilitate mapping of functional protein domains, based upon exon boundaries, and will be particularly relevant where there is either limited, or conflicting information as to the consequences of in-frame dystrophin exon deletions on the clinical severity and progression of the dystrophinopathy.


Assuntos
Processamento Alternativo , Distrofina/biossíntese , Oligonucleotídeos Antissenso/farmacologia , Isoformas de Proteínas/biossíntese , Animais , Camundongos
9.
Br J Nutr ; 103(5): 652-62, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19860996

RESUMO

Some dietary fats are a risk factor for Alzheimer's disease (AD) but the mechanisms for this association are presently unknown. In the present study we showed in wild-type mice that chronic ingestion of SFA results in blood-brain barrier (BBB) dysfunction and significant delivery into the brain of plasma proteins, including apo B lipoproteins that are endogenously enriched in amyloid-beta (Abeta). Conversely, the plasma concentration of S100B was used as a marker of brain-to-blood leakage and was found to be increased two-fold because of SFA feeding. Consistent with a deterioration in BBB integrity in SFA-fed mice was a diminished cerebrovascular expression of occludin, an endothelial tight junction protein. In contrast to SFA-fed mice, chronic ingestion of MUFA or PUFA had no detrimental effect on BBB integrity. Utilising highly sensitive three-dimensional immunomicroscopy, we also showed that the cerebral distribution and co-localisation of Abeta with apo B lipoproteins in SFA-fed mice are similar to those found in amyloid precursor protein/presenilin-1 (APP/PS1) amyloid transgenic mice, an established murine model of AD. Moreover, there was a strong positive association of plasma-derived apo B lipoproteins with cerebral Abeta deposits. Collectively, the findings of the present study provide a plausible explanation of how dietary fats may influence AD risk. Ingestion of SFA could enhance peripheral delivery to the brain of circulating lipoprotein-Abeta and exacerbate the amyloidogenic cascade.


Assuntos
Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína B-100/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Gorduras na Dieta/farmacologia , Ácidos Graxos/farmacologia , Doença de Alzheimer/metabolismo , Animais , Apolipoproteína B-100/sangue , Biomarcadores/metabolismo , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/metabolismo , Feminino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia/métodos , Ocludina , Presenilina-1 , Fatores de Risco , Distribuição Tecidual
10.
Mol Ther Nucleic Acids ; 22: 263-272, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33230432

RESUMO

Dystrophin plays a crucial role in maintaining sarcolemma stability during muscle contractions, and mutations that prevent the expression of a functional protein cause Duchenne muscular dystrophy (DMD). Antisense oligonucleotide-mediated manipulation of pre-messenger RNA splicing to bypass Duchenne-causing mutations and restore functional dystrophin expression has entered the clinic for the most common DMD mutations. The rationale of "exon skipping" is based upon genotype-phenotype correlations observed in Becker muscular dystrophy, a milder allelic disorder generally characterized by in-frame deletions and internally truncated but semi-functional dystrophin isoforms. However, there is a lack of genotype-phenotype correlations downstream of DMD exon 55, as deletions in this region are rare and most single exon deletions would disrupt the reading frame. Consequently, the amenability of mutations in this region of the DMD gene to exon skipping strategies remains unknown. Here, we induced "Becker muscular dystrophy-like" in-frame dystrophin isoforms in vivo by intraperitoneal injection of peptide-conjugated phosphorodiamidate morpholino oligomers targeting selected exons. The dystrophin isoform encoded by the transcript lacking exons 56+57 appears to be more functional than that encoded by the 58+59-deleted transcript, as determined by higher dystrophin expression, stabilized ß-dystroglycan, and less severe dystrophic pathology, indicating some potential for the strategy to address Duchenne-causing mutations affecting these exons.

11.
Sci Rep ; 10(1): 6702, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317649

RESUMO

Pompe disease is caused by mutations in the GAA gene, resulting in deficient lysosomal acid-α-glucosidase activity in patients, and a progressive decline in mobility and respiratory function. Enzyme replacement therapy is one therapeutic option, but since not all patients respond to this treatment, alternative interventions should be considered. One GAA mutation, c.-32-13T > G, impacts upon normal exon 2 splicing and is found in two-thirds of late-onset cases. We and others have explored a therapeutic strategy using splice modulating phosphorodiamidate morpholino oligomers to enhance GAA exon 2 inclusion in the mature mRNA of patients with one c.-32-13T > G allele. We designed 20 oligomers and treated fibroblasts derived from five patients to identify an oligomer sequence that maximally increased enzyme activity in all fibroblasts. The most effective splice correcting oligomer was chosen to treat forced-myogenic cells, derived from fibroblasts from nine patients carrying the c.-32-13T > G mutation. After transfection, we show increased levels of the full-length GAA transcript, acid-α-glucosidase protein, and enzyme activity in all patients' myogenic cells, regardless of the nature of the mutation in the other allele. This data encourages the initiation of clinical trials to assess the therapeutic efficacy of this oligomer for those patients carrying the c.-32-13T > G mutation.


Assuntos
Doença de Depósito de Glicogênio Tipo II/enzimologia , Doença de Depósito de Glicogênio Tipo II/genética , Oligonucleotídeos Antissenso/farmacologia , Splicing de RNA/genética , alfa-Glucosidases/metabolismo , Idade de Início , Estudos de Casos e Controles , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Doença de Depósito de Glicogênio Tipo II/patologia , Humanos , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , alfa-Glucosidases/genética
12.
Histochem Cell Biol ; 131(5): 661-6, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19225804

RESUMO

Parenchymal accumulation of amyloid-beta (A beta) is a hallmark pathological feature of Alzheimer's disease. An emerging hypothesis is that blood-to-brain delivery of A beta may increase with compromised blood-brain barrier integrity. In plasma, substantial A beta is associated with triglyceride-rich lipoproteins (TRLs) secreted by the liver and intestine. Utilizing apolipoprotein B as an exclusive marker of hepatic and intestinal TRLs, here we show utilizing an highly sensitive 3-dimensional immuno-microscopy imaging technique, that in APP/PS1 amyloid transgenic mice, concomitant with substantially increased plasma A beta, there is a significant colocalization of apolipoprotein B with cerebral amyloid plaque. The findings are consistent with the possibility that circulating lipoprotein-A beta contributes to cerebral amyloidosis.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Apolipoproteínas B/metabolismo , Oligopeptídeos/metabolismo , Placa Amiloide/metabolismo , Receptores de Superfície Celular/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Humanos , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Oligopeptídeos/genética , Nexinas de Proteases , Receptores de Superfície Celular/genética
13.
Br J Nutr ; 101(3): 340-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18631412

RESUMO

Dietary cholesterol may influence Alzheimer's disease risk, because it regulates the synthesis of amyloid-beta. It was recently demonstrated in enterocytes of wild-type mice that intracellular amyloid-beta expression is enhanced in response to a high-fat diet made up of SFA and cholesterol. Intestinally derived amyloid-beta may be associated with postprandial lipoproteins in response to dietary fats and could be a key regulator in chylomicron metabolism. The present study was designed to investigate the role of cholesterol in modulating amyloid-beta abundance in enterocytes. Wild-type mice were fed a low-fat diet supplemented with 2 % (w/w) cholesterol. The effects of cholesterol absorption inhibition and cholesterol biosynthesis inhibition utilising ezetimibe and atorvastatin, respectively, were also studied. Quantitative immunohistochemistry was utilised to determine enterocytic amyloid-beta homeostasis. We found that enterocytic amyloid-beta concentration was significantly attenuated in mice fed the 2 % (w/w) cholesterol diet. However, blocking cholesterol absorption reversed the cholesterol-feeding effect. Consistent with a suppressive effect of cholesterol on enterocytic amyloid-beta abundance, atorvastatin, an inhibitor of cholesterol biosynthesis, enhanced amyloid-beta. However, providing exogenous cholesterol abolished the atorvastatin-induced effect. In contrast to the suppression of enterocytic amyloid-beta by dietary cholesterol, mice fed a diet enriched in SFA had markedly greater abundance. Collectively, the findings suggest that exogenous and endogenous cholesterol reduce amyloid-beta concentration in enterocytes by suppressing production, or enhancing secretion associated with postprandial lipoproteins. Intestinally derived amyloid-beta will contribute to the pool of plasma protein and may influence cerebral amyloid homeostasis by altering the bi-directional transfer across the blood-brain barrier.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Colesterol na Dieta/administração & dosagem , Enterócitos/metabolismo , Ácidos Heptanoicos/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Pirróis/farmacologia , Peptídeos beta-Amiloides/análise , Animais , Anticolesterolemiantes/farmacologia , Atorvastatina , Azetidinas/farmacologia , Peso Corporal/efeitos dos fármacos , Colesterol/sangue , Enterócitos/química , Ezetimiba , Feminino , Imuno-Histoquímica , Absorção Intestinal , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Triglicerídeos/sangue
14.
Sci Rep ; 9(1): 12994, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506448

RESUMO

With recent approvals of antisense oligonucleotides as therapeutics, there is an increasing interest in expanding the application of these compounds to many other diseases. Our laboratory focuses on developing therapeutic splice modulating antisense oligonucleotides to treat diseases potentially amendable to intervention during pre-mRNA processing, and here we report the use of oligomers to down-regulate integrin alpha 4 protein levels. Over one hundred antisense oligonucleotides were designed to induce skipping of individual exons of the ITGA4 transcript and thereby reducing protein expression. Integrin alpha 4-mediated activities were evaluated in human dermal fibroblasts and Jurkat cells, an immortalised human T lymphocyte cell line. Peptide conjugated phosphorodiamidate morpholino antisense oligomers targeting ITGA4 were also assessed for their effect in delaying disease progression in the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis. With the promising results in ameliorating disease progression, we are optimistic that the candidate oligomer may also be applicable to many other diseases associated with integrin alpha 4 mediated inflammation. This highly specific strategy to down-regulate protein expression through interfering with normal exon selection during pre-mRNA processing should be applicable to many other gene targets that undergo splicing during expression.


Assuntos
Derme/efeitos dos fármacos , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/terapia , Terapia Genética , Integrinas/antagonistas & inibidores , Oligonucleotídeos Antissenso/farmacologia , Splicing de RNA/efeitos dos fármacos , Animais , Adesão Celular , Movimento Celular , Derme/metabolismo , Derme/patologia , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Integrinas/genética , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Oligonucleotídeos Antissenso/genética , Splicing de RNA/genética
15.
J Appl Physiol (1985) ; 105(2): 662-8, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18499783

RESUMO

The mdx mouse model of muscular dystrophy has a premature stop codon preventing production of dystrophin. This results in a progressive phenotype causing centronucleation of skeletal muscle fibers, muscle weakness, and fibrosis and kyphosis. Antisense oligonucleotides alter RNA splicing to exclude the nonsense mutation, while still maintaining the open reading frame to produce a shorter, but partially functional dystrophin protein that should ameliorate the extent of pathology. The present study investigated the benefits of chronic treatment of mdx mice by once-monthly deep intramuscular injections of antisense oligonucleotides into paraspinal muscles. After 8 mo of treatment, mdx mice had reduced development of kyphosis relative to untreated mdx mice, a benefit that was retained until completion of the study at 18 mo of age (16 mo of treatment). This was accompanied by reduced centronucleation in the latissimus dorsi and intercostals muscles and reduced fibrosis in the diaphragm and latissimus dorsi. These benefits were accompanied by a significant increase in dystrophin production. In conclusion, chronic antisense oligonucleotide treatment provides clear and ongoing benefits to paralumbar skeletal muscle, with associated marked reduction in kyphosis.


Assuntos
Cifose/genética , Cifose/prevenção & controle , Músculo Esquelético/fisiologia , Oligonucleotídeos Antissenso/farmacologia , Envelhecimento/fisiologia , Animais , Western Blotting , Fibrose/patologia , Imunofluorescência , Histocitoquímica , Injeções Intramusculares , Cifose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular/fisiologia , Proteínas Musculares/biossíntese , Proteínas Musculares/isolamento & purificação , Músculo Esquelético/patologia , Oligonucleotídeos Antissenso/administração & dosagem , Músculos Respiratórios/patologia , Coluna Vertebral/fisiologia
16.
Lipids Health Dis ; 7: 15, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18426603

RESUMO

BACKGROUND: Amyloid-beta (Abeta), a key protein found in amyloid plaques of subjects with Alzheimer's disease is expressed in the absorptive epithelial cells of the small intestine. Ingestion of saturated fat significantly enhances enterocytic Abeta abundance whereas fasting abolishes expression. Apolipoprotein (apo) E has been shown to directly modulate Abeta biogenesis in liver and neuronal cells but it's effect in enterocytes is not known. In addition, apo E modulates villi length, which may indirectly modulate Abeta as a consequence of differences in lipid absorption. This study compared Abeta abundance and villi length in wild-type (WT) and apo E knockout (KO) mice maintained on either a low-fat or high-fat diet. Wild-type C57BL/6J and apo E KO mice were randomised for six-months to a diet containing either 4% (w/w) unsaturated fats, or chow comprising 16% saturated fats and 1% cholesterol. Quantitative immunohistochemistry was used to assess Abeta abundance in small intestinal enterocytes. Apo E KO mice given the low-fat diet had similar enterocytic Abeta abundance compared to WT controls. RESULTS: The saturated fat diet substantially increased enterocytic Abeta in WT and in apo E KO mice, however the effect was greater in the latter. Villi height was significantly greater in apo E KO mice than for WT controls when given the low-fat diet. However, WT mice had comparable villi length to apo E KO when fed the saturated fat and cholesterol enriched diet. There was no effect of the high-fat diet on villi length in apo E KO mice. CONCLUSION: The findings of this study are consistent with the notion that lipid substrate availability modulates enterocytic Abeta. Apo E may influence enterocytic lipid availability by modulating absorptive capacity.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Gorduras na Dieta/metabolismo , Enterócitos/metabolismo , Animais , Feminino , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Absorção Intestinal/genética , Intestino Delgado/citologia , Intestino Delgado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Regulação para Cima/genética , Regulação para Cima/fisiologia
17.
J Nutr Biochem ; 18(4): 279-84, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16962759

RESUMO

In Alzheimer's disease (AD), beta-amyloid (Abeta) is deposited in extracellular matrices, initiating an inflammatory response and compromising cellular integrity. Epidemiological evidence and studies in animal models provide strong evidence that high-saturated-fat and/or cholesterol-rich diets exacerbate cerebral amyloidosis, although the mechanisms for this are unclear. Abeta contains hydrophobic domains and is normally bound to lipid-associated chaperone proteins. In previous studies, we have put forward the notion that Abeta is a regulatory component of postprandial lipoproteins (i.e., chylomicrons) and that aberrations in kinetics may be a contributing risk factor for AD. To explore this further, in this study, we utilized an immunohistochemical approach to determine if Abeta or its precursor protein is expressed in epithelial cells of the small intestine -- the site of chylomicron biogenesis. Wild-type mice were fed a low-fat or a high-fat dietary regime and sacrificed, and their small intestines were isolated. We found that, in mice fed low-fat chow, substantial Abeta/precursor protein was found exclusively in absorptive epithelial cells of the small intestine. In contrast, no Abeta/precursor protein was found in epithelial cells when mice were fasted for 65 h. In addition, we found that a high-fat feeding regime strongly stimulates epithelial cell Abeta/precursor protein concentration. Our findings are consistent with the notion that Abeta may serve as a regulatory apolipoprotein of postprandial lipoproteins.


Assuntos
Peptídeos beta-Amiloides/biossíntese , Precursor de Proteína beta-Amiloide/biossíntese , Gorduras na Dieta/administração & dosagem , Mucosa Intestinal/metabolismo , Animais , Colesterol/administração & dosagem , Imuno-Histoquímica , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Intestino Delgado/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
18.
Genet Vaccines Ther ; 4: 3, 2006 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-16719929

RESUMO

BACKGROUND: Duchenne muscular dystrophy is a fatal genetic disorder caused by dystrophin gene mutations that result in premature termination of translation and the absence of functional protein. Despite the primary dystrophin gene lesion, immunostaining studies have shown that at least 50% of DMD patients, mdx mice and a canine model of DMD have rare dystrophin-positive or 'revertant' fibres. Fine epitope mapping has shown that the majority of transcripts responsible for revertant fibres exclude multiple exons, one of which includes the dystrophin mutation. METHODS: The mdx mouse model of muscular dystrophy has a nonsense mutation in exon 23 of the dystrophin gene. We have shown that antisense oligonucleotides (AOs) can induce the removal of this exon, resulting in an in-frame mRNA transcript encoding a shortened but functional dystrophin protein. To emulate one exonic combination associated with revertant fibres, we target multiple exons for removal by the application of a group of AOs combined as a "cocktail". RESULTS: Exons 19-25 were consistently excluded from the dystrophin gene transcript using a cocktail of AOs. This corresponds to an alternatively processed gene transcript that has been sporadically detected in untreated dystrophic mouse muscle, and is presumed to give rise to a revertant dystrophin isoform. The transcript and the resultant correctly localised smaller protein were confirmed by RT-PCR, immunohistochemistry and western blot analysis. CONCLUSION: This work demonstrates the feasibility of AO cocktails to by-pass dystrophin mutation hotspots through multi-exon skipping. Multi-exon skipping could be important in expediting an exon skipping therapy to treat DMD, so that the same AO formulations may be applied to several different mutations within particular domains of the dystrophin gene.

19.
Neuromuscul Disord ; 15(9-10): 622-9, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16084084

RESUMO

Induction of specific exon skipping during the processing of the dystrophin gene transcript is being pursued as a potential therapy for Duchenne muscular dystrophy. Antisense oligonucleotides directed at motifs involved in pre-mRNA processing can manipulate dystrophin exon incorporation in the mature gene transcript. We have compared the exon skipping ability of oligodeoxyribonucleotides with compounds of the identical sequence incorporating 2'-O-methyl modified bases. Antisense oligonucleotides composed entirely of 2'-O-methyl modified bases on a phosphorothioate backbone were consistently more efficient at inducing exon skipping than comparable oligodeoxyribonucleotides. Chimeric antisense oligonucleotides, mixtures of unmodified and 2'-O-methyl modified bases, induced intermediate levels of exon skipping. In addition, we describe terminal modifications that may be incorporated into the 2'-O-methyl antisense oligonucleotides to further enhance efficiency of exon skipping. Our findings suggest that 2'-O-methyl antisense oligonucleotides should be considered for human clinical trials involving targeted exon skipping in dystrophin gene expression in preference to oligodeoxyribonucleotides.


Assuntos
Éxons/genética , Oligonucleotídeos Antissenso/farmacologia , Animais , Sequência de Bases , Linhagem Celular , Éxons/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Distrofia Muscular Animal , Precursores de RNA/efeitos dos fármacos , Precursores de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
PLoS One ; 9(6): e98306, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24892300

RESUMO

We sought to use splice-switching antisense oligonucleotides to produce a model of accelerated ageing by enhancing expression of progerin, translated from a mis-spliced lamin A gene (LMNA) transcript in human myogenic cells. The progerin transcript (LMNA Δ150) lacks the last 150 bases of exon 11, and is translated into a truncated protein associated with the severe premature ageing disease, Hutchinson-Gilford progeria syndrome (HGPS). HGPS arises from de novo mutations that activate a cryptic splice site in exon 11 of LMNA and result in progerin accumulation in tissues of mesodermal origin. Progerin has also been proposed to play a role in the 'natural' ageing process in tissues. We sought to test this hypothesis by producing a model of accelerated muscle ageing in human myogenic cells. A panel of splice-switching antisense oligonucleotides were designed to anneal across exon 11 of the LMNA pre-mRNA, and these compounds were transfected into primary human myogenic cells. RT-PCR showed that the majority of oligonucleotides were able to modify LMNA transcript processing. Oligonucleotides that annealed within the 150 base region of exon 11 that is missing in the progerin transcript, as well as those that targeted the normal exon 11 donor site induced the LMNA Δ150 transcript, but most oligonucleotides also generated variable levels of LMNA transcript missing the entire exon 11. Upon evaluation of different oligomer chemistries, the morpholino phosphorodiamidate oligonucleotides were found to be more efficient than the equivalent sequences prepared as oligonucleotides with 2'-O-methyl modified bases on a phosphorothioate backbone. The morpholino oligonucleotides induced nuclear localised progerin, demonstrated by immunostaining, and morphological nuclear changes typical of HGPS cells. We show that it is possible to induce progerin expression in myogenic cells using splice-switching oligonucleotides to redirect splicing of LMNA. This may offer a model to investigate the role of progerin in premature muscle ageing.


Assuntos
Células Musculares/metabolismo , Proteínas Nucleares/genética , Oligonucleotídeos Antissenso/farmacologia , Precursores de Proteínas/genética , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Western Blotting , Linhagem Celular , Forma do Núcleo Celular/efeitos dos fármacos , Éxons/genética , Humanos , Lamina Tipo A , Morfolinos/farmacologia , Células Musculares/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Precursores de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA