Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Sep Sci ; 44(4): 895-902, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34321981

RESUMO

The calcium signaling protein calmodulin regulates numerous intracellular processes. We introduce a sensitive microchip assay to separate and detect calmodulin binding proteins. The assay utilizes an optimized microchip electrophoresis protein separation platform with laser-induced fluorescence detection. Fluorescence-labeled calmodulin modified with a photoreactive diazirine crosslinker allowed selective detection of calmodulin binding proteins. We demonstrate successful in-vitro crosslinking of calmodulin with two calmodulin binding proteins, calcineurin and nitric oxide synthase. We compare the efficacy of commonly applied electrophoretic separation modes: microchip capillary zone electrophoresis, microchip micellar electrokinetic chromatography/gel electrophoresis, and nanoparticle colloidal arrays. Out of the methods tested, polydymethylsiloxane/glass chips with microchip zone electrophoresis gave the poorest separation, whereas sieving methods in which electro-osmotic flow was suppressed gave the best separation of photoproducts of calmodulin conjugated with calmodulin binding proteins.


Assuntos
Proteínas de Ligação a Calmodulina/análise , Eletroforese em Microchip
2.
J Sep Sci ; 44(3): 744-751, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33226183

RESUMO

Separation of a set of model proteins was tested on a microchip electrophoresis analytical platform capable of sample injection by two different electrokinetic mechanisms. A range of separation modes-microchip capillary zone electrophoresis, microchip micellar electrokinetic chromatography, and nanoparticle-based sieving-was tested on glass and polydimethylsiloxane/glass microchips and with silica-nanoparticle colloidal arrays. The model proteins calmodulin (18 kiloDalton), bovine serum albumin (66 kDa), and concanavalin (106 kDa) were labeled with Alexa Fluor 647 for laser-induced fluorescence detection. The best separation and resolution were obtained in a silica-nanoparticle colloidal array chip.


Assuntos
Calmodulina/isolamento & purificação , Cromatografia Capilar Eletrocinética Micelar , Concanavalina A/isolamento & purificação , Análise Serial de Proteínas , Soroalbumina Bovina/isolamento & purificação , Animais , Calmodulina/química , Bovinos , Concanavalina A/química , Soroalbumina Bovina/química
3.
J Chem Phys ; 151(22): 225102, 2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31837693

RESUMO

Small peptides in solution adopt a specific morphology as they function. It is of fundamental interest to examine the structural properties of these small biomolecules in solution and observe how they transition from one conformation to another and form functional structures. In this study, we have examined the structural properties of a simple dipeptide and a five-residue peptide with the application of far-UV circular dichroism (CD) spectroscopy as a function of temperature, fluorescence anisotropy, and all-atom molecular dynamics simulation. Analysis of the temperature dependent CD spectra shows that the simplest dipeptide N-acetyl-tryptophan-amide (NATA) adopts helical, beta sheet, and random coil conformations. At room temperature, NATA is found to have 5% alpha-helical, 37% beta sheet, and 58% random coil conformations. To our knowledge, this type of structural content in a simplest dipeptide has not been observed earlier. The pentapeptide (WK5) is found to have four major secondary structural elements with 8% 310 helix, 14% poly-L-proline II, 8% beta sheet, and 14% turns. A 56% unordered structural population is also present for WK5. The presence of a significant population of 310 helix in a simple pentapeptide is rarely observed. Fluorescence anisotropy decay (FAD) measurements yielded reorientation times of 45 ps for NATA and 120 ps for WK5. The fluorescence anisotropy decay measurements reveal the size differences between the two peptides, NATA and WK5, with possible contributions from differences in shape, interactions with the environment, and conformational dynamics. All-atom molecular dynamics simulations were used to model the structures and motions of these two systems in solution. The predicted structures sampled by both peptides qualitatively agree with the experimental findings. Kinetic modeling with optimal dimensionality reduction suggests that the slowest dynamic processes in the dipeptide involve sidechain transitions occurring on a 1 ns timescale. The kinetics in the pentapeptide monitors the formation of a distorted helical structure from an extended conformation on a timescale of 10 ns. Modeling of the fluorescence anisotropy decay is found to be in good agreement with the measured data and correlates with the main contributions of the measured reorientation times to individual conformers, which we define as dynamic elements. In NATA, the FAD can be well represented as a sum of contributions from representative conformers. This is not the case in WK5, where our analysis suggests the existence of coupling between conformational dynamics and global tumbling. The current study involving detailed experimental measurements and atomically detailed modeling reveals the existence of specific secondary structural elements and novel dynamical features even in the simplest peptide systems.

4.
Biochim Biophys Acta ; 1863(8): 2017-26, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27113857

RESUMO

The calcium signaling protein calmodulin (CaM) interacts with many target proteins inside the cell to regulate a wide range of biological signals. CaM's availability to propagate signals depends on its mobility, which may be regulated by interactions with multiple target proteins. We detected single molecules of CaM labeled with a fluorescent dye and injected into living HEK 293 cells, and we used high-speed, wide-field, single-molecule imaging to track single CaM molecules. Single-molecule trajectories were analyzed to characterize the motions of individual CaM molecules. Single-molecule localization resolved CaM positions with a position accuracy of <100nm, permitting sub-diffraction imaging of features with localized CaM that form in response to increased free Ca(2+). Single-molecule tracking demonstrated the presence of a wide range of mobilities of individual calmodulin molecules in a cell, with diffusion coefficients ranging from <0.01µm(2)s(-1) to ~5µm(2) s(-1), whereas analysis by spatio-temporal image correlation spectroscopy revealed faster-moving components with diffusion coefficients of >10µm(2)s(-1). For molecules confined to small regions of the cell, super-resolved images of presumed signaling complexes were recovered. Individual trajectories were classified as normal diffusion, confined diffusion, or directed motion, and could suggest how the individual CaM molecules were bound in the cell. The results show that interactions of CaM with target proteins result in decreased translational mobilities of a significant fraction of CaM molecules inside cells. The work presented here illustrates methods that can characterize location, mobilities, and the availability of signaling molecules in live cells.


Assuntos
Calmodulina/análise , Imagem Individual de Molécula , Transporte Biológico , Sinalização do Cálcio , Carbocianinas , Difusão , Ácido Egtázico/análogos & derivados , Recuperação de Fluorescência Após Fotodegradação , Corantes Fluorescentes , Células HEK293 , Humanos , Microinjeções , Ligação Proteica , Frações Subcelulares/química
5.
J Opt Soc Am B ; 30(6): 1671-1682, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23950620

RESUMO

We demonstrate coherent Raman spectroscopy (CRS) using a tunable excitation source based on a single femtosecond fiber laser. The frequency difference between the pump and the Stokes pulses was generated by soliton self-frequency shifting (SSFS) in a nonlinear optical fiber. Spectra of C-H stretches of cyclohexane were measured simultaneously by stimulated Raman gain (SRG) and coherent anti-Stokes Raman scattering (CARS) and compared. We demonstrate the use of spectral focusing through pulse chirping to improve CRS spectral resolution. We analyze the impact of pulse stretching on the reduction of power efficiency for CARS and SRG. Due to chromatic dispersion in the fiber-optic system, the differential pulse delay is a function of Stokes wavelength. This differential delay has to be accounted for when performing spectroscopy in which the Stokes wavelength needs to be scanned. CARS and SRG signals were collected and displayed in two dimensions as a function of both the time delay between chirped pulses and the Stokes wavelength, and we demonstrate how to find the stimulated Raman spectrum from the two-dimensional plots. Strategies of system optimization consideration are discussed in terms of practical applications.

6.
Chem Phys ; 4222013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24223465

RESUMO

We analyze single molecule FRET burst measurements using Bayesian nested sampling. The MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data. FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared for simulated data and for calmodulin labeled at residues 44 and 117. MultiNest compares favorably with maximum entropy analysis for simulated data, judged by the Bayesian evidence. FRET efficiency distributions recovered for calmodulin labeled with two different FRET dye pairs depended on the dye pair and changed upon Ca2+ binding. We also looked at the FRET efficiency distributions of calmodulin bound to the calcium/calmodulin dependent protein kinase II (CaMKII) binding domain. For both dye pairs, the FRET efficiency distribution collapsed to a single peak in the case of calmodulin bound to the CaMKII peptide. These measurements strongly suggest that consideration of dye-protein interactions is crucial in forming an accurate picture of protein conformations from FRET data.

7.
J Chem Phys ; 134(14): 145101, 2011 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-21495770

RESUMO

We introduce a new approach to analyze single-molecule Förster resonance energy transfer (FRET) data. The method recognizes that FRET efficiencies assumed by traditional ensemble methods are unobservable for single molecules. We propose instead a method to predict distributions of FRET parameters obtained directly from the data. Distributions of FRET rates, given the data, are precisely defined using Bayesian methods and increase the information derived from the data. Benchmark comparisons find that the response time of the new method outperforms traditional methods of averaging. Our approach makes no assumption about the number or distribution of underlying FRET states. The new method also yields information about joint parameter distributions going beyond the standard framework of FRET analysis. For example, the running distribution of FRET means contains more information than any conceivable single measure of FRET efficiency. The method is tested against simulated data and then applied to a pilot-study sample of calmodulin molecules immobilized in lipid vesicles, revealing evidence for multiple dynamical states.


Assuntos
Algoritmos , Teorema de Bayes , Calmodulina/química , Transferência Ressonante de Energia de Fluorescência/métodos , Simulação por Computador , Lipossomos/química , Modelos Teóricos
8.
J Phys Chem A ; 114(1): 133-42, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20055513

RESUMO

We present a study of reorientation dynamics of the three aromatic amino acids and their side chain models in aqueous solution. Experimentally, anisotropy decay measurements with picosecond time resolution were performed for blocked tryptophan, tyrosine, and phenyalanine and model compounds p-cresol and 3-methylindole. Computationally, rotational diffusion was modeled by molecular dynamics simulations for the three aromatic residues and their side chain models: benzene, toluene, phenol, p-cresol, indole, and 3-methylindole in explicit water. Our simulations used the CHARMM protein force field and associated TIP3P water model and tend to underestimate the rotational correlation times. However, the simulations yield several interesting qualitative insights into reorientational motions that complement the experimental measurements. The effects of substituent and temperature on reorientations of the parent compounds are well reproduced computationally. Additionally, simulations indicate strongly anisotropic reorientations for most of the studied compounds and a separation of time scales between conformational dynamics and rotational diffusion. Comparison with continuum hydrodynamic models suggests that we may consider that the blocked amino acids move under stick boundary conditions, while the dynamics for most of the model compounds falls between stick and slip conditions. Our systematic treatment of blocked amino acids, starting from the parent compounds (benzene, phenol, and indole) provides a baseline for understanding the anisotropy decay signals of more complicated peptide systems.


Assuntos
Aminoácidos Aromáticos/química , Simulação de Dinâmica Molecular , Anisotropia , Modelos Químicos , Temperatura
9.
Anal Biochem ; 385(1): 1-6, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19000896

RESUMO

Calmodulin (CaM) is a Ca2+ signaling protein that binds to a wide variety of target proteins, and it is important to establish methods for rapid characterization of these interactions. Here we report the use of fluorescence polarization (FP) to measure the Kd for the interaction of CaM with the plasma membrane Ca2+-ATPase (PMCA), a Ca2+ pump regulated by binding of CaM. Previous assays of PMCA-CaM interactions were indirect, based on activity or kinetics measurements. We also investigated the Ca2+ dependence of CaM binding to PMCA. FP assays directly detect CaM-target interactions and are rapid, sensitive, and suitable for high-throughput screening assay formats. Values for the dissociation constant K(d) in the nanomolar range are readily measured. We measured the changes in anisotropy of CaM labeled with Oregon Green 488 on titration with PMCA, yielding a K(d) value of CaM with PMCA (5.8 +/- 0.5 nM) consistent with previous indirect measurements. We also report the binding affinity of CaM with oxidatively modified PMCA (K(d) = 9.8 +/- 2.0 nM), indicating that the previously reported loss in CaM-stimulated activity for oxidatively modified PMCA is not a result of reduced CaM binding. The Ca2+ dependence follows a simple Hill plot demonstrating cooperative binding of Ca2+ to the binding sites in CaM.


Assuntos
Cálcio/farmacologia , Calmodulina/química , Polarização de Fluorescência/métodos , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Ácidos Carboxílicos/química , Cinética , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , Ligação Proteica/efeitos dos fármacos
10.
Protein Sci ; 17(3): 555-62, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18218717

RESUMO

The Ca2+ signaling protein calmodulin (CaM) stimulates Ca2+ pumping in the plasma-membrane Ca2+-ATPase (PMCA) by binding to an autoinhibitory domain, which then dissociates from the catalytic domain of PMCA to allow full activation of the enzyme. We measured single-molecule fluorescence trajectories with polarization modulation to track the conformation of the autoinhibitory domain of PMCA pump bound to fluorescently labeled CaM. Interchange of the autoinhibitory domain between associated and dissociated conformations was detected at a physiological Ca2+ concentration of 0.15 microM, where the enzyme is only partially active, but not at 25 microM, where the enzyme is fully activated. In previous work we showed that the conformation of the autoinhibitory domain in PMCA-CaM complexes could be monitored by the extent of modulation of single-molecule fluorescence generated with rotating excitation polarization. In the present work, we determined the timescale of association and dissociation of the autoinhibitory domain with the catalytic regions of the PMCA. Association of the autoinhibitory domain was rare at a high Ca2+ concentration (25 microM). At a lower Ca2+ concentration (0.15 microM), conformations of the autoinhibitory domain interchanged with a dissociation rate of 0.042 +/- 0.011 sec(-1) and an association rate of 0.023 +/- 0.006 sec-1. The results indicate that the response time of PMCA upon a reduction in Ca2+ is limited to tens of seconds by autoinhibitory dynamics. This property may reduce the sensitivity of PMCA to transient reductions in intracellular Ca2+. We suggest that the dynamics of the autoinhibitory domain may play a novel role in regulating PMCA activity.


Assuntos
Calmodulina/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , Calmodulina/metabolismo , Polarização de Fluorescência , Corantes Fluorescentes/química , Humanos , Cinética , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Estrutura Terciária de Proteína , Rodaminas/química
11.
Front Biosci (Landmark Ed) ; 23(11): 2133-2145, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29772550

RESUMO

Multi-domain oxidoreductases are a family of enzymes that catalyze oxidation-reduction reactions through a series of electron transfers. Efficient electron transfer requires a sequence of protein conformations that position electron donor and acceptor domains in close proximity to each other so that electron transfer can occur efficiently. An example is mammalian nitric oxide synthase (NOS), which consists of an N-terminal oxygenase domain containing heme and a C-terminal reductase domain containing NADPH/FAD and FMN subdomains. We describe the use of time-resolved and single-molecule fluorescence to detect and characterize the conformations and conformational dynamics of the neuronal and endothelial isoforms of NOS. Fluorescence signals are provided by a fluorescent dye attached to the Ca2+-signaling protein calmodulin (CaM), which regulates NOS activity. Time-resolved fluorescence decays reveal the presence of at least four underlying conformational states that are differentiated by the extent of fluorescence quenching. Single-molecule fluorescence displays transitions between conformational states on the time scales of milliseconds to seconds. This review describes the type of information available by analysis of time-resolved and single-molecule fluorescence experiments.


Assuntos
Calmodulina/química , Corantes Fluorescentes/química , Óxido Nítrico Sintase/química , Conformação Proteica , Animais , Cálcio/metabolismo , Calmodulina/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Ligação Proteica
12.
Microsc Res Tech ; 81(4): 413-418, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29322588

RESUMO

To fully exploit the power of coherent Raman imaging, techniques are needed to image more than one vibrational frequency simultaneously. We describe a method for switching between two vibrational frequencies based on a single fiber-laser source. Stokes pulses were generated by soliton self-frequency shifting in a photonic crystal fiber. Pump and Stokes pulses were stretched to enhance vibrational resolution by spectral focusing. Stokes pulses were switched between two wavelengths on the millisecond time scale by a liquid-crystal retarder. Proof-of-principle is demonstrated by coherent anti-Stokes Raman imaging of polystyrene beads embedded in a poly(methyl methacrylate) (PMMA) matrix. The Stokes shift was switched between 3,050 cm-1 , where polystyrene has a Raman transition, and 2,950 cm-1 , where both polystyrene and PMMA have Raman resonances. The method can be extended to multiple vibrational modes.

13.
Protein Sci ; 16(6): 1017-23, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17525461

RESUMO

The four integral delta subunits of the phosphorylase kinase (PhK) complex are identical to calmodulin (CaM) and confer Ca(2+) sensitivity to the enzyme, but bind independently of Ca(2+). In addition to binding Ca(2+), an obligatory activator of PhK's phosphoryltransferase activity, the delta subunits transmit allosteric signals to PhK's remaining alpha, beta, and gamma subunits in activating the enzyme. Under mild conditions about 10% of the delta subunits can be exchanged for exogenous CaM. In this study, a CaM double-mutant derivatized with a fluorescent donor-acceptor pair (CaM-DA) was exchanged for delta to assess the conformational substates of PhKdelta by single molecule fluorescence resonance energy transfer (FRET) +/-Ca(2+). The exchanged subunits were determined to occupy distinct conformations, depending on the absence or presence of Ca(2+), as observed by alterations of the compact, mid-length, and extended populations of their FRET distance distributions. Specifically, the combined predominant mid-length and less common compact conformations of PhKdelta became less abundant in the presence of Ca(2+), with the delta subunits assuming more extended conformations. This behavior is in contrast to the compact forms commonly observed for many of CaM's Ca(2+)-dependent interactions with other proteins. In addition, the conformational distributions of the exchanged PhKdelta subunits were distinct from those of CaM-DA free in solution, +/-Ca(2+), as well as from exogenous CaM bound to the PhK complex as delta'. The distinction between delta and delta' is that the latter binds only in the presence of Ca(2+), but stoichiometrically and at a different location in the complex than delta.


Assuntos
Calmodulina/química , Calmodulina/metabolismo , Fosforilase Quinase/química , Fosforilase Quinase/metabolismo , Animais , Cálcio/metabolismo , Transferência Ressonante de Energia de Fluorescência , Ligação Proteica , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Coelhos
14.
J Phys Chem B ; 111(19): 5494-502, 2007 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-17455970

RESUMO

It has long been recognized that the fluorescence lifetimes of amino acid residues such as tyrosine and tryptophan depend on the rotameric configuration of the aromatic side chain, but estimates of the rate of interchange of rotameric states have varied widely. We report measurements of the rotameric populations and interchange rates for tyrosine in N-acetyltyrosinamide (NATyrA), the tripeptide Tyr-Gly-Gly (YGG), and the pentapeptide Leu-enkephalin (YGGFL). The fluorescence lifetimes were analyzed to determine the rotameric interchange rates in the context of a model incorporating exchange among three rotameric states. Maximum entropy method analysis verified the presence of three fluorescence decay components for YGGFL and two for YGG and NATyrA. Rotameric exchange between the gauche(-) and trans states occurred on the nanosecond time scale, whereas exchange with the gauche(+) state occurred on a longer time scale. Good agreement was obtained with rotameric populations and exchange rates from molecular dynamics simulations. Quenching by iodide was used to vary the intrinsic fluorescence lifetimes, providing additional constraints on the determined interchange rates. The temperature dependence was measured to determine barriers to exchange of the two most populated rotamers of 3, 5, and 7 kcal/mol for NATyrA, YGG, and YGGFL, respectively.


Assuntos
Peptídeos/química , Tirosina/análogos & derivados , Tirosina/química , Fluorescência , Iodetos/química , Cinética , Estrutura Molecular
15.
Biochemistry ; 45(51): 15288-300, 2006 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-17176051

RESUMO

Differential effects of ligand binding on local and global fibroblast growth factor-10 (FGF-10) flexibility and stability have been investigated utilizing a variety of experimental and computational techniques. Normal mode analysis was used to predict the low frequency motions and regional flexibility of FGF-10. Similarly, regional variations in local folding/unfolding equilibria were characterized with the COREX/BEST algorithm. Experimental adiabatic and isothermal compressibilities of FGF-10 alone and in the presence of polyanions are compared. Furthermore, the effect of polyanions on the coefficient of thermal expansion is compared. Measurements of density, heat capacity, compressibility, and expansibility were combined to calculate experimentally determined volume and enthalpy fluctuations. Global effects of polyanions on FGF-10 flexibility, thermodynamic fluctuations, and hydration vary depending on the size and charge density of the polyanion. Local effects of polyanions were investigated utilizing time-resolved fluorescence spectroscopy and red edge excitation spectroscopy (REES). Increased rigidity of the protein matrix or an increased solvent response surrounding the Trp residues is observed in the presence of polyanions. Similarly, time-resolved spectroscopy reveals increased ground state heterogeneity and increased dipole relaxation on the time scale of fluorescence for FGF-10 in the presence of polyanions. These polyanions increase heterogeneity, global flexibility, and fluctuations while increasing the melting temperature (Tm) of FGF-10.


Assuntos
Fator 10 de Crescimento de Fibroblastos/química , Fator 10 de Crescimento de Fibroblastos/metabolismo , Água/química , Cristalografia por Raios X , Humanos , Ligantes , Polieletrólitos , Polímeros/metabolismo , Ligação Proteica , Conformação Proteica , Espectrometria de Fluorescência , Espectrofotometria , Análise Espectral , Termodinâmica , Triptofano/química
16.
Opt Express ; 14(21): 9825-31, 2006 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19529374

RESUMO

Two-photon scanning fluorescence microscopy has become a powerful tool for imaging living cells and tissues. Most applications of two-photon microscopy employ a Ti:sapphire laser excitation source, which is not readily portable or rapidly tunable. This work explores the use of two-photon fiber laser excitation (TP-FLEX) as an excitation source for scanning two-photon microscopy. We have further demonstrated the use of a photonic crystal fiber (PCF) for facile tuning of the excitation wavelength over the range from 810 nm to 1100 nm. We generated two-photon fluorescence images at excitation wavelengths from 850 nm to 1100 nm detected on a scanning-stage microscope. By PCF wavelength tuning the dye BODIPY fl was selectively excited at 1000 nm whereas MitoTracker red was excited preferentially at 1100 nm. We discuss the potential for fiber laser sources coupled with PCF wavelength tuning as an attractive tunable excitation source for two-photon scanning fluorescence microscopy.

17.
Microsc Res Tech ; 69(11): 891-3, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16886226

RESUMO

This work evaluates a femtosecond fiber laser for use in two-photon fluorescence fluctuation spectroscopy. Fiber lasers present an attractive alternative to Ti:Sapphire systems because of their compact size and portability. Autocorrelation of the second harmonic generation signal from the laser demonstrates that its stability is sufficient for two-photon fluorescence correlation spectroscopy. Fluorescence correlation spectroscopy autocorrelation traces were well fit by a Gaussian-Lorentzian squared model with a beam waist near the diffraction limit for the 810 nm wavelength. A photon counting histogram collected with this system also fit nicely to a single-species model, further demonstrating the quality of the focal shape. The authors conclude that the output from the femtosecond fiber laser is sufficiently stable and has a high enough quality beam shape for fluctuation fluorescence methods, and thus represents an effective, compact, readily portable two-photon excitation source.

18.
J Phys Chem B ; 120(19): 4357-64, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27111039

RESUMO

We investigate the roles of measurement time scale and the nature of the fluorophores in the FRET states measured for calmodulin, a calcium signaling protein known to undergo pronounced conformational changes. The measured FRET distributions depend markedly on the measurement time scale (nanosecond or microsecond). Comparison of FRET distributions measured by donor fluorescence decay with FRET distributions recovered from single-molecule burst measurements binned over time scales of 90 µs to 1 ms reveals conformational averaging over the intervening time regimes. We find further that, particularly in the presence of saturating Ca(2+), the nature of the measured single-molecule FRET distribution depends markedly on the identity of the FRET pair. The results suggest interchange between conformational states on time scales of hundreds of microseconds or less. Interaction with a fluorophore such as the dye Texas Red alters both the nature of the measured FRET distributions and the dynamics of conformational interchange. The results further suggest that the fluorophore may not be merely a benign reporter of protein conformations in FRET studies, but may in fact alter the conformational landscape.


Assuntos
Calmodulina/química , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Cálcio/química , Cálcio/metabolismo , Calmodulina/metabolismo , Dicroísmo Circular , Conformação Proteica , Xantenos/química
19.
J Phys Chem B ; 120(12): 3089-99, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-26967551

RESUMO

Fluorescence anisotropy decay measurements and all atom molecular dynamics simulations are used to characterize the orientational motion and preferential interaction of a peptide, N-acetyl-tryptophan-amide (NATA) containing two peptide bonds, in aqueous, urea, guanidinium chloride (GdmCl), and proline solution. Anisotropy decay measurements as a function of temperature and concentration showed moderate slowing of reorientations in urea and GdmCl and very strong slowing in proline solution, relative to water. These effects deviate significantly from simple proportionality of peptide tumbling time to solvent viscosity, leading to the investigation of microscopic preferential interaction behavior through molecular dynamics simulations. Examination of the interactions of denaturants and osmolyte with the peptide backbone uncovers the presence of strongest interaction with urea, intermediate with proline, and weakest with GdmCl. In contrast, the strongest preferential solvation of the peptide side chain is by the nonpolar part of the proline zwitterion, followed by urea, and GdmCl. Interestingly, the local density of urea around the side chain is higher, but the GdmCl distribution is more organized. Thus, the computed preferential solvation of the side chain by the denaturants and osmolyte can account for the trend in reorientation rates. Analysis of water structure and its dynamics uncovered underlying differences between urea, GdmCl, and proline. Urea exerted the smallest perturbation of water behavior. GdmCl had a larger effect on water, slowing kinetics and stabilizing interactions. Proline had the largest overall interactions, exhibiting a strong stabilizing effect on both water-water and water-peptide hydrogen bonds. The results for this elementary peptide system demonstrate significant differences in microscopic behavior of the examined solvent environments. For the commonly used denaturants, urea tends to form disorganized local aggregates around the peptide groups and has little influence on water, while GdmCl only forms specific interactions with the side chain and tends to destabilize water structure. The protective osmolyte proline has the strongest and most specific interactions with the tryptophan side chain, and also stabilizes both water-water and water-peptide hydrogen bonds. Our results strongly suggest protein or peptide denaturation triggered by urea occurs by direct interaction, whereas GdmCl interacts favorably with side chains and destabilizes peptide-water hydrogen bonds. The stabilization of biopolymers by an osmolyte such as proline is governed by favorable preferential interaction with the side chains and stabilization of water.


Assuntos
Movimento (Física) , Peptídeos/química , Desnaturação Proteica , Polarização de Fluorescência , Guanidina/química , Simulação de Dinâmica Molecular , Concentração Osmolar , Prolina/química , Ureia/química , Água/química
20.
J Phys Chem B ; 109(26): 12658-62, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16852567

RESUMO

We used single-pair fluorescence resonance energy transfer (spFRET) to track distance changes between domains of fluorescently labeled calmodulin (CaM) on the sub-millisecond time scale. In most cases, CaM remained in the same conformational substate over time periods of up to 1 ms, showing that conformational interchange occurs on a longer time scale. However, in some instances, apparent transitions between conformational substates could be detected. The magnitude of sub-millisecond motion within the dominant conformational substate also revealed fluctuations in distance between domains that were dependent on pH and ionic strength.


Assuntos
Calmodulina/química , Modelos Moleculares , Movimento (Física) , Termodinâmica , Animais , Difusão , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA